Skip to main content
Log in

Kinetics of Na+-, K+-ATPase Inhibition by an Endogenous Modulator (II-A)

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We have previously reported the isolation by gel filtration and anionic exchange HPLC of two brain Na+, K+-ATPase inhibitors, II-A and II-E, and kinetics of enzyme interaction with the latter. In the present study we evaluated the kinetics of synaptosomal membrane Na+, K+-ATPase with II-A and found that inhibitory activity was independent of ATP (2–8 mM), Na+ (3.1–100 mM), or K+ (2.5–40 mM) concentration. Hanes-Woolf plots showed that II-A decreases Vmax in all cases; KM value decreased for ATP but remained unaltered for Na+ and K+, indicating respectively uncompetitive and noncompetitive interaction. However, II-A became a stimulator at 0.3 mM K+ concentration. It is postulated that brain endogenous factor II-A may behave as a sodium pump modulator at the synaptic region, an action which depends on K+ concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Skou, J. C. 1957. The influence of same cations on an adenosine triphosphatase from peripheral nerves. Biochem. Biophys. Acta. 23:394-401.

    Google Scholar 

  2. Stahl, W. L. 1986. The Na+, K+-ATPase of nervous tissue. Neurochem. Int. 8:449-476.

    Google Scholar 

  3. Wu, P. H. 1986. Na+, K+-ATPase in nervous tissue. Pages 451-502, in Boulton, A. A., Baker, G. B., and Wu, P. H., (eds.), Neuromethods, Enzymes, vol. 5, Humana, Clifton, NJ

    Google Scholar 

  4. Albers, R. W., and Siegel, G. J. 1999. Membrane transport. Pages 95-118, in Siegel, G. J., Agranoff, B. W., Albers, R. W., Fisher, S. K., and Uhler, M. D. (eds.), Basic Neurochemistry, Lippincott-Raven, Philadelphia.

    Google Scholar 

  5. Rodríguez de Lores Arnaiz, G., Alberici, M., and De Robertis, E. 1967. Ultrastructural and enzymic studies of cholinergic and non-cholinergic synaptic membranes isolated from brain cortex. J. Neurochem. 14:215-225.

    Google Scholar 

  6. Rodríguez de Lores Arnaiz, G., and Antonelli de Gómez de Lima, M. 1986. Partial characterization of an endogenous factor which modulates the effect of catecholamines on synaptosomal Na+, K+-ATPase. Neurochem. Res. 11:933-947.

    Google Scholar 

  7. Rodríguez de Lores Arnaiz, G. 1992. In search of synaptosomal Na+, K+-ATPase regulators. Mol. Neurobiol. 6:359-375.

    Google Scholar 

  8. Rodríguez de Lores Arnaiz, G. 1993. An endogenous factor which interacts with synaptosomal membrane Na+, K+-ATPase activation by K+. Neurochem. Res. 18:655-661.

    Google Scholar 

  9. Rodríguez de Lores Arnaiz, G., and Peñ a, C. 1995. Characterization of synaptosomal membrane Na+, K+-ATPase inhibitors. Neurochem. Int. 27:319-327.

    Google Scholar 

  10. Herbin, T., Peñ a, C., and Rodríguez de Lores Arnaiz, G. 1998. Kinetics of Na+, K+-ATPase inhibition by a rat brain endogenous factor (II-E). Neurochem. Res. 23:33-37.

    Google Scholar 

  11. Albers, R. W., Rodríguez de Lores Arnaiz, G., and De Robertis, E. 1965. Sodium-potassium-activated ATPase and potassium-activated p-nitrophenylphosphatase: a comparison of their subcellular localizations in rat brain. Proc. Natn. Acad. Sci. USA 53:557-564.

    Google Scholar 

  12. Lowry, O. H., and Ló pez, J. A. 1946. Determination of inorganic phosphate in presence of labile P esters. J. Biol. Chem. 162:421-428.

    Google Scholar 

  13. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. L. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275.

    Google Scholar 

  14. McGrail, K. M., Phillips, J. M., and Sweadner, K. J. 1991. Immunofluorescent localization of three Na+, K+-ATPase isozymes in the rat central nervous system: both neurons and glia can express more than one Na+, K+-ATPase. J. Neurosci. 11:381-391.

    Google Scholar 

  15. Antonelli, M., Casillas, T., and Rodríguez de Lores Arnaiz, G. 1991. Effect of Na+, K+-ATPase modifiers on high-affinitive ouabain binding determined by quantitative autoradiography. J. Neurosci. Res. 28:324-331.

    Google Scholar 

  16. Rodríguez de Lores Arnaiz, G. 1990. A study of tissue specificity of brain soluble fractions effect on Na+, K+-ATPase activity. Neurochem. Res. 15:289-294.

    Google Scholar 

  17. Lucking, K., and Nielsen, J. M. 1997. Abundance of α3, α2 and α1 isoforms of Na+, K+-ATPase in rat kidney as estimated by competitive RT-PCR and [3H]ouabain binding. Ann. N. Y. Acad. Sci. 834:107-109.

    Google Scholar 

  18. Goto, A., Yamada, K., Yagi, N., Yoshioka, M., and Sugimoto, T. 1992. Physiology and pharmacology of endogenous digital is like factors. Pharmacol. Rev. 44:377-399.

    Google Scholar 

  19. Hamlyn, J. M., Blaustein, M. P., Bova, S., DuCharme, D. W., Harris, D. W., Mandel, F., Mathews, W. R., and Ludens, J. H. (1991). Identification and characterization of a ouabain-like compound from human plasma. Proc. Natl. Acad. Sci. USA 88:6259-6263.

    Google Scholar 

  20. Mathews, W. R., Ducharme, D. W., Hamlym, J. M., Mandel, F., Clark, M. A., and Ludens, J. H. 1991. Mass spectral characterization of an endogenous digitalis-like factor from human plasma. Hypertension 17:930-935.

    Google Scholar 

  21. Fedorova, O. V., and Bagrov, A. Y. 1997. Inhibition of Na/K ATPase from rat aorta by two Na/K pump inhibitors, ouabain and marinobufagenin: evidence of interaction with different alpha-subunit isoforms. Am. J. Hypertens. 10:929-935.

    Google Scholar 

  22. Goto, A., and Yamada, K. 1998. Purification of endogenous digitalis-like factors from normal human urine. Clin Exp. Hypertens. 20:551-556.

    Google Scholar 

  23. Hamlyn, J. M. 1998. Observation of the nature, biosynthesis, secretion and significance of endogenous ouabain. Clin Exp. Hypertens. 20:523-533.

    Google Scholar 

  24. Tal, D. M., Yanuck, M. D., van Hall, G., and Karlish, S. J. D. 1989. Identification of Na+/K+-ATPase inhibitors in bovine plasma as fatty acids and hydrocarbons. Biochim. Biophys. Acta 985:55-59.

    Google Scholar 

  25. Bagrov, A. Y., Fedorova, O. V., Dmitrieva, R. Y., Howald, W. N., Hunter, A. P., Kuznetsova, E. A., and Shpen, V. M. 1998. Characterization of a urinary bufodienolide Na+, K+-ATPase inhibitor in patients after acute myocardial infarction. Hypertension 31:1097-1103.

    Google Scholar 

  26. Rodríguez de Lores Arnaiz, G., Reinés, A., Herbin, T., and Peñ a, C. 1998. Na+, K+-ATPase interaction with a brain endogenous inhibitor (endobain E). Neurochem. Int. 33:425-433.

    Google Scholar 

  27. Songu-Mize, E., Gunter, J. L., and Caldwell, R. W. 1989. Comparative ability of digoxin and an aminosugar cardiac glycoside to bind to and inhibit Na+, K+-adenosine triphosphatase. Effect of potassium. Biochem. Pharmacol. 38:3689-3695.

    Google Scholar 

  28. Peñ a, C., and Rodríguez de Lores Arnaiz, G. (1997) Differential properties between an endogenous brain Na+, K+-ATPase inhibitor and ouabain. Neurochem. Res. 22:379-383.

    Google Scholar 

  29. Akera, T., Wiest, S. A., and Brody, T. M. 1979. Differential effect of potassium on the action of digoxin and digoxigenin in guinea-pig heart. Eur. J. Pharmacol. 57:343-351.

    Google Scholar 

  30. Akera, T., Ng, Y.-C., Shieh, I.-S., Bero, E., Brody, T. M., and Braselton, W. E. 1985. Effects of K+on the interaction between cardiac glycosides and Na+, K+-ATPase. Eur. J. Pharmacol. 111: 147-157.

    Google Scholar 

  31. Ebner, F., and Mermi, J. 1991. The association with receptors regulates the Na+, K+-ATPase inhibitory potency of some cardioactive steroids. Eur. J. Pharmacol. 207:61-65.

    Google Scholar 

  32. Tamura, M., Harris, T. M., Konishi, F., and Inagami, T. 1993. Isolation and characterization of an endogenous Na+, K+-ATPasespecific inhibitor from pig urine. Eur. J. Biochem. 211:317-327.

    Google Scholar 

  33. Balzan, S., Ghione, S., Pieraccini, L., Biver, P., Di Bartolo, V., and Montali, U. 1994. Endogenous digitalis-like factor from umbilical cord and ouabain: comparison of biochemical properties. Pages 755-758, in Bamberg, E., and Schoner, W. (eds.), The Sodium Pump, Steinkopff, Darmstadt.

    Google Scholar 

  34. Norgaard, A., Kjeldsen, K., and Clausen, T. 1981. Potassium depletion decreases the number of 3H-ouabain binding sites and the active Na-K transport in skeletal muscle. Nature 293:739-741.

    Google Scholar 

  35. McDonough, A. A., Azuma, K. K:, Lescale-Matys, L., Tang, M.-J., Nakhoul, F., Hensley, C. B., and Komatsu, Y. 1992. Physiologic rationale for multiple sodium pump isoforms. Differential regulation of α1 vs α2 by ionic stimuli. Ann. N. Y. Acad. Sci. 671:156-169.

    Google Scholar 

  36. Schmidt, T. A., Larsen, J. S., and Kjeldsen, K. 1992. Quantification of rat cerebral cortex Na+, K+-ATPase: Effect of age and potassium depletion. J. Neurochem. 59:2094-2104.

    Google Scholar 

  37. Goto, A., and Yamada, K. 1998. Ouabain-like factor. Curr. Opin. Nephrol. Hypertens. 7:189-196.

    Google Scholar 

  38. Ferrandi, M., Manunta, P., Rivera, R., Bianchi, G., and Ferrari, P. 1998. Role of the ouabain-like factor and Na-K pump in rat and human genetic hypertension. Clin. Exp. Hypertens. 20: 629-639.

    Google Scholar 

  39. Van Huysse, J. W., and Leenen, F. H. 1998. Role of endogenous brain “ouabain” in the sympathoexcitatory and pressor effects of sodium. Clin. Exp. Hypertens. 20:657-667.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinés, A., Peña, C. & Rodríguez de Lores Arnaiz, G. Kinetics of Na+-, K+-ATPase Inhibition by an Endogenous Modulator (II-A). Neurochem Res 25, 121–127 (2000). https://doi.org/10.1023/A:1007599718356

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007599718356

Navigation