Advertisement

Mathematical Geology

, Volume 31, Issue 7, pp 907–927 | Cite as

Simulation of Non-Gaussian Transmissivity Fields Honoring Piezometric Data and Integrating Soft and Secondary Information

  • José E. Capilla
  • Javier Rodrigo
  • J. Jaime Gómez-Hernández
Article

Abstract

The conditional probabilities (CP) method implements a new procedure for the generation of transmissivity fields conditional to piezometric head data capable to sample nonmulti-Gaussian random functions and to integrate soft and secondary information. The CP method combines the advantages of the self-calibrated (SC) method with probability fields to circumvent some of the drawbacks of the SC method—namely, its difficulty to integrate soft and secondary information or to generate non-Gaussian fields. The SC method is based on the perturbation of a seed transmissivity field already conditional to transmissivity and secondary data, with the perturbation being function of the transmissivity variogram. The CP method is also based on the perturbation of a seed field; however, the perturbation is made function of the full transmissivity bivariate distribution and of the correlation to the secondary data. The two methods are applied to a sample of an exhaustive non-Gaussian data set of natural origin to demonstrate the interest of using a simulation method that is capable to model the spatial patterns of transmissivity variability beyond the variogram. A comparison of the probabilistic predictions of convective transport derived from a Monte Carlo exercise using both methods demonstrates the superiority of the CP method when the underlying spatial variability is non-Gaussian.

conditional probabilities method self-calibrated method stochastic inversion probabilistic assessment geostatistics stochastic hydrology probability fields 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Bakr, A. A., Gelhar, L. W., Gutjahr, A. L. and McMillan, J. R., 1978, Stochastic analysis of spatial variability in subsurface flows, 1, Comparison of one-and three-dimensional flows: Water Resources Research, v. 14, no. 2, p. 263–272.Google Scholar
  2. Capilla, J. E., 1995, Incorporación de información secundaria en la generación de campos de transmisividad condicionados a medidas de altura piezométrica: Technical Report of Research Activities, Valencian Agency for Research and University Affairs, Generalitat Valenciana, Spain, 40 p.Google Scholar
  3. Capilla, J. E., Gómez-Hernández, J. J., and Sahuquillo, A. 1995. Trayectorias de partículas en un acuífero confinado con densidad variable espacialmente y régimen estacionario: Proceedings of VI Simposio de hidrogeología, 23–27 October, Seville, Spain, v. XIX, p. 873–887.Google Scholar
  4. Capilla, J. E., Gómez-Hernández, J. J., and Sahuquillo, A., 1997, Stochastic Simulation of Transmissivity Fields Conditional to Both Transmissivity and Piezometric Data, 2. Demonstration on a Synthetic Aquifer: J. of Hydrology, v. 203, n. 1, p. 175–188.Google Scholar
  5. Capilla, J. E., Gómez-Hernández, J. J., and Sahuquillo, A., 1998, Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data, 3. Application to the waste isolation pilot plant, in New Mexico (USA): Journal of Hydrology, v. 207, n. 3–4, 254–269.Google Scholar
  6. Capilla, J. E., Rodrigo, J., and Gómez-Hernández, J. J. 1998. Worth of secondary data compared to piezometric data for the probabilistic assessment of radionuclides migration: Stochastic Hydrology and Hydraulics, v. 12, no. 3–4, p. 171–190.Google Scholar
  7. Cassiraga, E. F., and Gómez-Hernández, J. J. 1996, Incorporating geophysical information: Which method to use? in Baafi, E., and Schofield, N., eds., Wollongong '96: Kluwer Academic Publishers, Dordrecht, Holland, v. 1, p. 1121–1132.Google Scholar
  8. Deutsch, C. V., and Journel, A. G., 1998, GSLIB, Geostatistical Software Library and User's Guide, 2nd edition: Oxford University press, Oxford, 369 p.Google Scholar
  9. Froidevaux, R., 1994, Probability field simulation, in Soares, A., ed., Geostatistics Troia '92: Kluwer Academic Publishers, Dordrecht, Holland, v. 1, p. 73–84.Google Scholar
  10. Gómez-Hernández, J. J., and Cassiraga, E., 1993, Theory and practice of sequential simulation, in Armstrong, M., and Dowd, P., eds., Geostatistical Simulations: Kluwer Academic Publishers, Dordrecht, Holland, p. 111–124.Google Scholar
  11. Gómez-Hernández, J. J., Sahuquillo, A., and Capilla, J. E., 1997, Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data, 1. Theory: J. of Hydrology, v. 203, n. 1–4, p. 162–174.Google Scholar
  12. Isaaks, E. H., and Srivastava, R. M., 1989, An Introduction to Applied Geostatistics: Oxford University Press, Oxford, 561 p.Google Scholar
  13. Journel, A. G., and Zhu, H., 1993, Formatting and integrating soft data: Stochastic imaging via the Markov-Bayes algorithm, in Soares, A., ed., Geostatistics Troia '92: Kluwer Academic Publishers, Dordrecht, p. 1–12.Google Scholar
  14. Sahuquillo, A., Capilla, J. E., Gomez-Hernandez, J. J., and Andreu, J., 1992, Conditional simulation of transmissivity fields honoring piezometric data, in Blain and Cabrera, eds., Hydraulic Engineering Software IV, Fluid Flow Modeling: Elsevier Applied Science, v. II, pp. 201–214.Google Scholar
  15. Srivastava, R. M., 1992, Reservoir characterization with probability field simulation, in Proceedings of the 1992 SPE Annual Technical Conference and Exhibition, Washington DC: SPE, Richardson, Texas, USA, paper number 24753, p. 927–938.Google Scholar
  16. Zimmerman, D. A., de Marsily, G., Gotway, C. A., Marietta, M. G., Axness, C. L., Beauheim, R. L., Bras, Carrera, J., Dagan, G., Davies, P. B., Gallegos, D. P., Galli, A., Gómez-Hernández, J. J., Gorelick, S. M., Grindgrod, P., Gutjahr, A. L., Kitanidis, P. K., LaVenue, A. M., McLaughlin, D., Neuman, S. P., RamaRao, B. S., Ravenne, C., and Rubin, Y., 1998, A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling convective transport by groundwater flow: Water Resources Research, v. 34, no. 6, p. 1373–1414.Google Scholar

Copyright information

© International Association for Mathematical Geology 1999

Authors and Affiliations

  • José E. Capilla
    • 1
  • Javier Rodrigo
    • 1
  • J. Jaime Gómez-Hernández
    • 2
  1. 1.Dpto. de Física Aplicada, ETSI CaminosUniversidad Politécnica de ValenciaValenciaSpain
  2. 2.Dpto. de Ingeniería Hidráulica y Medio AmbienteUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations