Skip to main content
Log in

The Cytoskeletal Components of the Myelin Fraction Are Affected by a Single Intracranial Injection of Apotransferrin in Young Rats

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We have previously shown that in rat pups intracranially injected with a single dose of apotransferrin (aTf), there is an early oligodendroglial cell OLGc differentiation. The expression of the mRNAs of myelin basic proteins and of 2′,3′ cyclic nucleotide 3′-phosphodiesterase and the amount of the corresponding proteins, as well as myelin glycolipids and phospholipids, were significantly increased in these animals at 10 and 17 days of age. Microtubules and myelin basic proteins appear to be closely associated in OLGc and it has been shown that the mRNAs of myelin basic proteins are concentrated in the OLGc processes. The aim of this work was to clarify if the accelerated myelination produced by aTf could be linked to changes in certain cytoskeletal elements present in the myelin fraction such as tubulin, actin, and different microtubule-associated proteins (MAPs). A significant increase in the expression of the mRNA of tubulin and actin was observed in the brain of the aTf-treated animals. Several MAPs, particularly MAP 1B and stable tubule only peptide as well as actin and tubulin, were markedly increased in the Triton X-100 insoluble pellet obtained from the myelin fraction of these animals. The changes that we have previously described in the myelin of aTf intracranially injected rats, could be the consequence of its action on the cytoskeletal network of the OLGc. An enlargement of this structure would result in a more efficient and faster movement of the different components that are normally transported to the myelin by the cytoskeleton of this cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Escobar Cabrera, O. E., Bongarzone, E. R., Soto, E. F., and Pasquini, J. M. 1994. Single intracerebral injection of apotransferrin in young rats induces increased myelination. Dev. Neurosci. 16:248-254.

    Google Scholar 

  2. Escobar Cabrera, O. E., Zakin, M. M., Soto, E. F. and Pasquini, J. M. 1997. Single intracranial injection of apotransferrin in young rats increases the expression of specific myelin protein mRNA. J. Neurosci. Res. 47:603-609.

    Google Scholar 

  3. Espinosa A., Zhao, A., Kumar, A. and de Vellis, J. 1997. Transferrin is a functional trophic factor essential for myelination. J. Neurochem. 69:S 87A.

    Google Scholar 

  4. Connor, J. R. and Fine, R. 1986. The distribution of transferrin immuno-reactivity in the rat nervous system. Brain Res. 368:319-328.

    Google Scholar 

  5. Connor, J. R. and Fine, R. 1987. Development of transferrin-positive oligo-dendrocytes in the rat CNS. J. Neurosci. Res. 17:51-59.

    Google Scholar 

  6. Espinosa de los Monteros, A. and de Vellis, J. 1988. Myelin basic protein and transferrin characterize different subpopulations of oligodendrocytes in rat primary glial cultures. J. Neurosci. Res. 21:181-187.

    Google Scholar 

  7. Espinosa de los Monteros, A., Peñ a, L. A. and de Vellis, J. 1989. Does transferrin have a special role in the nervous system?. J. Neurosci. Res. 24:125-136.

    Google Scholar 

  8. Espinosa de los Monteros, A., Zhang, M. S. and de Vellis, J. 1992. Effect of exogenous transferrin in the developing rat brain. Trans. Am. Soc. Neurochem. 23:273.

    Google Scholar 

  9. Lazarides, E. 1980. Intermediate filaments as mechanical integrators of cellular space. Nature. 283:249-256.

    Google Scholar 

  10. Braun, P. 1984. Molecular organization of myelin. Pages 97-116, in Morell, P. (ed). Myelin, Plenum Press, New York.

    Google Scholar 

  11. Brown, M. C., Moreno, M. A. N., Bongarzone, E. R., Cohen, P., Soto, E. F. and Pasquini, J. M. 1993. Vesicular transport of myelin proteolipid and cerebroside sulfates to the myelin membrane. J. Neurosci. Res. 35:402-408.

    Google Scholar 

  12. Bizzozero, O. A., Pasquini, J. M. and Soto, E. F. 1982. Differential effect of colchicine upon the entry of proteins into myelin and myelin-related membranes. Neurochem Res. 7:1415-1425.

    Google Scholar 

  13. Ainger, K., Avossa, D., Morgan, F., Hill, S. J., Barry, C., Barbarese, E. and Carson, J. H. 1993. Transport and localization of exogenous myelin basic protein mRNA microinjected into oligodendrocytes. J. Cell. Biol. 123:431-441.

    Google Scholar 

  14. Brophy, P. J., Boccaccio, G. L. and Colman, D. R. 1993. The distribution of myelin basic protein mRNAs within myelinating oligodendrocytes. Trends Neurosci. 16:515-521.

    Google Scholar 

  15. Amur-Umarjee, S. G., Hall, L., Campagnoni, A. T. 1990. Spatial distribution of mRNAS for myelin proteins in primary cultures of mouse brain. Dev. Neurosci. 12:263-272.

    Google Scholar 

  16. Wilson, R. and Brophy, P. J. 1989. Role for the oligodendrocyte cytoskeleton in myelination. J. Neurosci. Res. 22:439-448.

    Google Scholar 

  17. Kalwy, S. A. and Smith, R. 1994. Mechanisms of myelin basic protein and proteolipid protein targeting in oligodendrocytes. Mol. Membr. Biol. 11:67-78.

    Google Scholar 

  18. Norton, W. T. and Poduslo, S. 1973. Myelination in rat brain: method of myelin isolation. J Neurochem. 21:749-757.

    Google Scholar 

  19. Gillespie, C. S., Wilson, R., Davidson, A. and Brophy, P. J. 1989. Characterization of a cytoskeletal matrix associated with myelin from rat brain. Biochem. J. 260:689-696.

    Google Scholar 

  20. Laemmli, U. K. 1970. Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature. 227:680-685.

    Google Scholar 

  21. Towbin, H., Staehelin, T. and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA. 76:4350-4354.

    Google Scholar 

  22. Pirollet, F., Rauch, C. T., Job, D. and Margolis, R. L. 1989. Monoclonal antibody to microtubule-associated STOP protein: affinity purification of neuronal STOP activity and comparison of antigen with activity in neuronal and non-neuronal cell extracts. Biochemistry. 28:835-842.

    Google Scholar 

  23. Nakane, P. K. 1968. Simultaneous localization of multiple tissue antigens, using the peroxidase-labeled antibody method; a study on pituitary gland of the rat. Histochem. Cytochem. 16:557-570.

    Google Scholar 

  24. Maniatis, T., Fritsch, K. F. and Sambroock, J. 1982. Page 166, in Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York. Cold Spring Harbor Laboratory.

    Google Scholar 

  25. Feinberg, A. P. and Vogelstein, B. 1984. A technique for radio-labelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 137:266-267.

    Google Scholar 

  26. Laxalt, A. M., Cassia, R. O., Sanllorenti, P. M., Madrid, E. A., Andreu, A. B., Ico, G. R., Conde, R. D. and Lamattina, L. 1996. Accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase RNA under biological stress conditions and elicitor treatments in potato. Plant Mol. Biol. 30:961-972.

    Google Scholar 

  27. Filkenstein, C., Maloberti, P., Mendez, C. F., Paz, C., Cornejo Maciel, F., Cymeryng, C., Neuman, I., Dada, L., Mele, P. G., Solano, A. and Podestá, E. J. 1998. An adrenocorticotropin-regulated phosphoprotein intermediary in steroid synthesis is similar to an acyl-CoA thioesterase enzyme. Eur. J. Biochem. 265:60-66.

    Google Scholar 

  28. Valenzuela, P., Quiroga, M., Zaldivar, J., Rutter, W. J., Kirschner, M. W. and Cleveland, D. W. 1981. Nucleotide and corresponding aminoacid sequences encoded by αand βtubulin mRNAs. Nature. 289:650-655.

    Google Scholar 

  29. Bloch, B., Popovici, T., Levin, M. J., Tuil, D. and Khan, A. 1985. Transferrin gene expression visualized in oligodendrocytes of the rat brain by using in situ hybridization and immunohistochemistry. Proc. Natl. Acad. Sci. USA. 82:6706-6710.

    Google Scholar 

  30. Beach, R. L., Popiela, H. and Festoff, B. W. 1983. The identification of neurotrophic factor as a transferrin. FEBS Lett. 156:151-156.

    Google Scholar 

  31. de Jong, G., van Dijk, J. P. and van Eijk, H. G. 1990. The biology of transferrin. Clinica Chimica Acta. 190:1-46

    Google Scholar 

  32. Escobar Cabrera, O. E., Soto, E. F. and Pasquini, J. M. 1999. Myelin membranes isolated from rats intracranially injected with apotransferrin are more susceptible to in vitro peroxidation. Neurochem. Res. (accepted for publication)

  33. Marta, C. B., Villar, M. J., Soto E. F. and Pasquini, J. M. 1999. Intracranial injection of apotransferrin causes early oligodendroglial cell differentiation and downregulates its gene in the CNS. J. Neurochem. 72:S 81A.

    Google Scholar 

  34. Dyer, C. A., Philibotte, T. M., Wolf, M. K. and Billings-Gagliardi, S. 1994. Myelin basic protein mediates extracellular signals that regulate microtubule stability in oligodendrocyte membrane sheets. J. Neurosci. Res. 39:97-107.

    Google Scholar 

  35. Pirollet, F., Derancourt, J., Haiech, J., Job, D. and Margolis, R. L. 1992. Ca2+calmodulin-regulated effectors of microtubule stability in bovine brain. Biochemistry. 31:8849-8855.

    Google Scholar 

  36. Pereyra, P. M., Horvath, E. and Braun, P. E. 1988. Triton X-100 extractions of central nervous system myelin indicate a possible role for the minor myelin proteins in the stability of lamellae. Neurochem. Res. 13:583-595.

    Google Scholar 

  37. Pasquini, J. M., Bizzozero, O. A., Besio Moreno, M. A. N. and Soto, E. F. 1987. Effects of calcium and cobalt ions on the transfer of proteins to the myelin membrane. Neurochem. Int. 11:17-22.

    Google Scholar 

  38. Gozes, I. and Richter-Landsberg, C. 1978. Identification of tubulin associated with rat brain myelin. FEBS Lett. 95:169-172.

    Google Scholar 

  39. LoPresti, P., Szuchet, S., Papasozomenos, S. Ch., Zinkowski, R. P. and Binder, L. I. 1995. Functional implications for the microtubule-associated protein tau: localization in oligodendrocytes. Proc. Natl. Acad. Sci. USA. 92:10369-10373.

    Google Scholar 

  40. Safaei, R. and Fischer, I. 1989. Cloning of a cDNA encoding MAP 1B in rat brain. Regulation of mRNA levels during development. J. Neurochem. 52:1871-1879.

    Google Scholar 

  41. Fischer, I., Konola, J. and Cochary, E. 1990. Microtubule-associated protein (MAP 1B) is present in cultured oligodendrocytes. J. Neurosci. Res. 33:177-187.

    Google Scholar 

  42. Vouyiouklis, D. A. and Brophy, P. J. 1993. Microtubule associated protein MAP 1B expression precedes the morphological differentiation of oligodendrocytes. J. Neurosci. Res. 35:257-267.

    Google Scholar 

  43. Muller, R., Heinrich, M., Heck, S., Blohm, D., and Richter-Landsberg, C. 1997. Expression of microtubule-associated proteins MAP2 and tau in cultured rat brain oligodendrocytes. Cell Tissue Res. 288:239-249.

    Google Scholar 

  44. Vouyiouklis, D. A., and Brophy, P. J. 1995. Microtubule-associated proteins in developing oligodendrocytes: Transient expression of a MAP2c isoform in oligodendrocyte precursors. J. Neurosci. Res. 42:803-817.

    Google Scholar 

  45. Kondo, T., Sakaguchi, M., and Namba, M. 1998. Characteristics of intracellular transferrin produced by human fibroblasts: its postranscriptional regulation and association with tubulin. Exp. Cell. Res. 242:38-44.

    Google Scholar 

  46. Sakaguchi, M., Kondo, T., Pu, H., and Namba, M. 1998. Differential localization of two types of transferrin produced by human fibroblasts or incorporated from culture medium. Cell Struct. Funct. 23:69-72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escobar Cabrera, O.E., Bongiovanni, G., Hallak, M. et al. The Cytoskeletal Components of the Myelin Fraction Are Affected by a Single Intracranial Injection of Apotransferrin in Young Rats. Neurochem Res 25, 669–676 (2000). https://doi.org/10.1023/A:1007515221008

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007515221008

Navigation