Skip to main content
Log in

On Constitutive Equations of Cauchy Elastic Solids: All Kinds of Crystals and Quasicrystals

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Our concern is with the problem of determining general reduced forms of constitutive equations of Cauchy elastic solids under all kinds of material symmetries, including well-known crystal classes and newly discovered quasicrystal classes. By means of Tschebysheff polynomials we present in unified forms simple irreducible representations for elastic constitutive equations under the infinitely many subgroup classes C 2m+1, C 2m+2, D 2m+1 and D 2m+2 for all m = 1, 2,... Moreover, we provide a simple representation for elastic constitutive equations under the most complicated point group, i.e. the icosahedral group. Each presented representation is expressed in terms of not more than nine polynomial tensor generators only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Reiner, A mathematical theory of dilatancy. Am. J. Math. 67 (1945) 350–362.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. M. Reiner, Elasticity beyond the elastic limit. Am. J. Math. 70 (1948) 433–446.

    Article  MATH  MathSciNet  Google Scholar 

  3. H. Richter, Das isotrope Elastizitatsgesetz. Zeits. Angew. Math. Mech. 28 (1948) 205–209.

    MATH  Google Scholar 

  4. R.S. Rivlin and J.L. Ericksen, Stress-deformation relations for isotropic materials. J. Rat. Mech. Anal. 4 (1955) 323–425.

    MATH  MathSciNet  Google Scholar 

  5. G.F. Smith and R.S. Rivlin, Stress-deformation relations for anisotropic solids. Arch. Rat. Mech. Anal. 1 (1957) 107–112.

    MATH  MathSciNet  Google Scholar 

  6. G.F. Smith and R.S. Rivlin, The strain-energy function for anisotropic elastic materials. Trans. Amer. Math. Soc. 88 (1958) 175–193.

    Article  MATH  MathSciNet  Google Scholar 

  7. A.C. Pipkin and R.S. Rivlin, The formulation of constitutive equations in continuum physics. Arch. Rat. Mech. Anal. 4 (1959) 129–144.

    MATH  MathSciNet  Google Scholar 

  8. J. Serrin, The derivation of stress-deformation relations for a Stokesian fluid. J. Math. Mech. 8 (1959) 459–468.

    MATH  MathSciNet  Google Scholar 

  9. J.E. Adkins, Symmetry relations for orthotropic and transversely isotropic materials. Arch. Rat. Mech. Anal. 4 (1960) 193–213.

    MATH  MathSciNet  Google Scholar 

  10. J.E. Adkins, Further symmetry relations for transversely isotropic materials. Arch. Rat. Mech. Anal. 5 (1960) 263–274.

    Article  MATH  MathSciNet  Google Scholar 

  11. J.L. Ericksen, Transversely isotropic fluids. Kolloid Zeitschrift 173 (1960) 117–122.

    Article  Google Scholar 

  12. G.F. Smith, Further results on the strain-energy function for anisotropic elastic materials. Arch. Rat. Mech. Anal. 10 (1962) 108–118.

    Article  MATH  Google Scholar 

  13. A.C. Pipkin and A.S. Wineman, Material symmetry restrictions on non-polynomial constitutive equations. Arch. Rat. Mech. Anal. 12 (1963) 420–426.

    Article  MATH  MathSciNet  Google Scholar 

  14. A.S. Wineman and A.C. Pipkin, Material symmetry restrictions on constitutive equations. Arch. Rat. Mech. Anal. 17 (1964) 184–214.

    Article  MATH  MathSciNet  Google Scholar 

  15. A.E. Green, A continuum theory of anisotropic fluids. Proc. Camb. Phil. Soc. 60 (1964) 123–128.

    Google Scholar 

  16. C. Truesdell and W. Noll, The Nonlinear Field Theories of Mechanics. In: S. Flügge (ed.), Handbuch der Physik, Bd. III/3, Berlin; Springer-Verlag (1965).

    Google Scholar 

  17. A.J.M. Spencer, Theory of Invariants. In: A.C. Eringen (ed.), Continuum Physics, Vol. I, New York: Academic Press (1971).

    Google Scholar 

  18. G.F. Smith, Constitutive Equations for Anisotropic and Isotropic Materials. New York: Elsevier (1994).

    Google Scholar 

  19. M.E. Gurtin, Introduction to Mechanics of Continuous Media. New York: Academic Press (1981).

    Google Scholar 

  20. M.E. Gurtin, Topics in Finite Elasticity. CBMS 35, SIAM, second printing, Berlin, New Jersey: Hamilton Press (1993).

    Google Scholar 

  21. J.P. Boehler, A simple derivation of representations for non-polynomial constitutive equations in some cases of anisotropy. Zeits. Angew. Math. Mech. 59 (1979) 157–167.

    MATH  MathSciNet  Google Scholar 

  22. I-Shih Liu, On representations of anisotropic invariants. Int. J. Engng Sci. 20 (1982) 1099–1109.

    Article  MATH  Google Scholar 

  23. J.M. Ball, Differentiability properties of symmetric and isotropic functions. Duke Math. J. 51 (1984) 699–728

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Basista, Tensor function representations as applied to deriving constitutive relations for skewed anisotropy. Zeits. Angew. Math. Mech. 65 (1985) 151–158.

    MATH  MathSciNet  Google Scholar 

  25. J.P. Boehler (ed.), Applications of Tensor Functions in Solid Mechanics. CISM Courses and Lectures No. 292, New York, Wien, etc.: Springer-Verlag (1987).

    MATH  Google Scholar 

  26. B. Bischoff-Beiermann and O.T. Bruhns, A physically motivated set of invariants and tensor generators in the case of transverse isotropy. Int. J. Engng Sci. 32 (1994) 1531–1552.

    Article  MATH  MathSciNet  Google Scholar 

  27. C.-S. Man, Remarks on the continuity of the scalar coefficients in the representation H(a) = α I + β a + γ a 2 for isotropic tensor functions. J. Elasticity 34 (1994) 229–238.

    MATH  MathSciNet  ADS  Google Scholar 

  28. C.-S. Man, Smoothness of the scalar coefficients in the representation H(a) = α I + β a + γ a 2 for isotropic tensor functions of class C r. J. Elasticity 40 (1995) 165–182.

    Article  MATH  MathSciNet  Google Scholar 

  29. Q.S. Zheng, On transversely isotropic, orthotropic and relatively isotropic functions of symmetric tensors, skewsymmetric tensors and vectors. Part I–V. Int. J. Engng Sci. 31 (1993) 1399–1453.

    Article  MATH  Google Scholar 

  30. Jan Rychlewski and J.M. Zhang, On representations of tensor functions: A review. Advances in Mechanics 14(4) (1991) 75–94.

    MathSciNet  Google Scholar 

  31. Q.S. Zheng, Theory of tensor function representations: A unified invariant approach to constitutive equations. Appl. Mech. Rev. 47 (1994) 545–587.

    Article  MATH  Google Scholar 

  32. F. Klein, Lectures on the Icosahedron. English version. New York: Dover (1884/1957).

    Google Scholar 

  33. H.S.M. Coxeter and W.O.J. Moser, Generators and Reflections for Discrete Groups. 4th edn. Springer-Verlag, Berlin, New York, etc. (1984).

    Google Scholar 

  34. M. Senechal, Finding the finite groups of symmetries of the sphere. Amer. Math. Monthly 97 (1990) 329–335.

    Article  MATH  MathSciNet  Google Scholar 

  35. V.K. Vainshtein, Modern Crystallography 1: Fundamentals of Crystals. Springer-Verlag, Berlin, New York, etc. (1994).

    Google Scholar 

  36. M. Senechal, Quasicrystals and Geometry. Cambridge: Cambridge Uni. Press (1995).

    MATH  Google Scholar 

  37. C.C. Wang, A new representation theorem for isotropic functions. Part II. Arch. Rat. Mech. Anal. 36 (1970) 198–223.

    Article  MATH  Google Scholar 

  38. H. Xiao and Z.H. Guo, A general representation theorem for anisotropic invariants. In: W. Z. Chien et al (eds), Proceedings of the 2nd International Conference on Nonlinear Mechanics, pp. 206–210. Beijing: Peking University Press (1993).

    Google Scholar 

  39. H. Xiao, A unified theory of representations for anisotropic tensor function of vectors and second order tensors. Peking University Dept. of Math. and Inst. of Math. Research Report No. 8, Beijing (1995); Arch. Mech. (in press).

  40. H. Xiao, General irreducible representations for constitutive equations of elastic crystals and transversely isotropic elastic solids. J. Elasticity 39 (1995) 47–73.

    MATH  MathSciNet  Google Scholar 

  41. H. Xiao, Two general representation theorems for arbitrary-order-tensor-valued isotropic and anisotropic tensor functions of vectors and second order tensors. Zeits. Angew. Math. Mech. 76 (1996) 151–162.

    Google Scholar 

  42. H. Xiao, On isotropic extension of anisotropic tensor functions. Zeits. Angew. Math. Mech. 76 (1996) 205–214.

    MATH  Google Scholar 

  43. H. Xiao, On representations of anisotropic scalar functions of a single symmetric tensor. Proc. Roy. Soc. London A 452 (1996) 1545–1561.

    ADS  Google Scholar 

  44. H. Xiao, On minimal representations for constitutive equations of anisotropic elastic materials. J. Elasticity 45 (1996) 13–32.

    Article  MATH  MathSciNet  Google Scholar 

  45. H. Xiao, On anisotropic invariants of a single symmetric tensor: crystal classes, quasicrystal classes and others. Proc. Roy. Soc. London A. (in press).

  46. H. Xiao, Further results on general representation theorems for arbitrary-order-tensor-valued isotropic and anisotropic tensor functions of vectors and second order tensors. Zeits. Angew. Math. Mech. (to appear).

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, H. On Constitutive Equations of Cauchy Elastic Solids: All Kinds of Crystals and Quasicrystals. Journal of Elasticity 48, 241–283 (1997). https://doi.org/10.1023/A:1007426414686

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007426414686

Navigation