Skip to main content
Log in

Transcriptional regulation by cAMP in the heart

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Stimulation of the cAMP-dependent signalling pathway by β-adrenergic catecholamines is an important physiological mechanism to increase contractile force in the heart. In addition to this, long-term β-adrenergic stimulation by elevated catecholamines also influences the expressional control of functionally relevant cardiac regulatory proteins in human heart failure. The regulation of transcription by the cAMP-response element (CRE) is an important mechanism for a cAMP-mediated control of gene expression involved e.g. in spermiogenesis and memory/learning processes. This article discusses recent data leading to the hypothesis that this mechanism also contributes to altered gene regulation in heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colucci WS, Braunwald E: Pathophysiology of heart failure. In: E. Braunwald (ed). Heart Disease, 5. Auflage. W.B. Saunders Company, Philadelphia, 1997, pp 394–420

    Google Scholar 

  2. Mittmann C, Eschenhagen T, Scholz H: Cellular and molecular aspects of contractile dysfunction in heart failure. Cardiovasc Res 39: 267–275, 1998

    Google Scholar 

  3. Daly PA, Sole MJ: Myocardial catecholamines and the pathophysiology of heart failure. Circulation 82(suppl I): I35–I43, 1990

    Google Scholar 

  4. Motomura S, Deighton NM, Zerkowski HR, Doetsch N, Michel MC, Brodde OE: Chronic beta 1-adrenoceptor antagonist treatment sensitizes beta 2-adrenoceptors, but desensitizes M2-muscarinic receptors in the human right atrium. Br J Pharmacol 101: 363–369, 1990

    Google Scholar 

  5. Sigmund M, Jakob H, Becker H, Hanrath P, Schumacher C, Eschenhagen T, Schmitz W, Scholz H, Steinfath M: Effects of metoprolol on myocardial β-adrenoceptors and G-proteins in patients with congestive heart failure. Eur J Clin Pharmacol 51: 127–132, 1996

    Google Scholar 

  6. Packer M, Bristow MR, Cohn JN, Colucci WS, Fowler MB, Gilbert EM, Shusterman NH (U.S. Carvedilol Heart Failure Study Group): The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. N Engl J Med 334: 1349–1355, 1996

    Google Scholar 

  7. Anonymous: Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF) (see comments). Lancet 353: 2001–2007, 1999

    Google Scholar 

  8. Schmitz W, Scholz H, Erdmann E: Effects of alpha-and beta-adrenergic agonists, phosphodiesterase inhibitors and adenosine on isolated human heart muscle preparations. Trends Pharmacol Sci 8: 447–450, 1987

    Google Scholar 

  9. Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, Billingham ME, Harrison DC, Stinson EB: Decreased catecholamine sensitivity and beta-adrenergic receptor density in failing human hearts. N Engl J Med 307: 205–211, 1982

    Google Scholar 

  10. Mulieri LA, Hasenfuss G, Leavitt B, Allen P, Alpert NR: Altered myocardial force-frequency relation in human heart failure. Circulation 85: 1743–1750, 1992

    Google Scholar 

  11. Davies CH, Davia BS, Bennet JG, Pepper JR, Poole-Wilson PA, Harding SE: Reduced contraction and altered frequency response of isolated ventricular myocytes from patients with heart failure. Circulation 92: 2540–2549, 1995

    Google Scholar 

  12. Brodde OE: β1-and β2-adrenoceptors in the human heart: Properties, function and alterations in chronic heart failure. Pharmacol Rev 43: 203–242, 1991

    Google Scholar 

  13. Feldman AM, Cates AE, Veazey WB, Hershberger RE, Bristow MR, Baughman KL, Baumgartner WA, Van Dop C: Increase of the 40,000-mol wt pertussis toxin substrate (G protein) in the failing human heart. J Clin Invest 82: 189–197, 1988

    Google Scholar 

  14. Neumann J, Schmitz W, Scholz H, von Meyerinck L, Dö ring V, Kalmá r P: Increase in myocardial Gi-proteins in heart failure. Lancet 2: 936–937, 1988

    Google Scholar 

  15. Bö hm M, Gierschik P, Jakobs KH, Pieske B, Schnabel P, Ungerer M, Erdmann E: Increase of G in human hearts with dilated but not ischemic cardiomyopathy. Circulation 82: 1249–1265, 1990

    Google Scholar 

  16. Bristow MR, Hershberger RE, Port JD, Minobe W, Rasmussen R: β1-and β2-adrenergic receptor-mediated adenylate cyclase stimulation in non-failing and failing human ventricular myocardium. Mol Pharm 35: 295–303, 1989

    Google Scholar 

  17. Danielsen W, von der Leyen H, Meyer W, Neumann J, Schmitz W, Scholz H, Starbatty J, Stein B, Dö ring V, Kalmá r P: Basal and isoprenaline-stimulated cAMP content in failing versus non-failing human cardiac preparations. J Cardiovasc Pharmacol 14: 171–173, 1989

    Google Scholar 

  18. Pieske B, Kretschmann B, Meyer M, Holubarsch C, Weirich J, Posival H, Minami K, Just H, Hasenfuss G: Alterations in intracellular calcium handling associated with the inverse force-frequency relation in human dilated cardiomyopathy. Circulation 92: 1169–1178, 1995

    Google Scholar 

  19. Limas CJ, Olivari MT, Goldenberg IF, Levine TB, Benditt DG, Simon A: Calcium uptake by cardiac sarcoplasmic reticulum in human dilated cardiomyopathy. Cardiovasc Res 21: 601–605, 1987

    Google Scholar 

  20. Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J, Holubarsch C, Posival H, Just H, Drexler H: Relation between myocardial function and expression of sarcoplasmic reticulum Ca2+-ATPase in failing and non-failing human myocardium. Circ Res 75: 434–442, 1994

    Google Scholar 

  21. O´ Brien PJ, Gwathmey JK: Myocardial Ca2+-and ATPase-cycling imbalances in end-stage dilated and ischemic cardiomyopathies. Cardiovasc Res 30: 394–404, 1995

    Google Scholar 

  22. Flesch M, Schwinger RH, Schnabel P, Schiffer F, van Gelder I, Bavendiek U, Sü dkamp M, Kuhn-Regnier F, Bö hm M: Sarcoplasmic reticulum Ca2+-ATPase and phospholamban mRNA and protein levels in end-stage heart failure due to ischemic or dilated cardiomyopathy. J Mol Med 74: 321–332, 1996

    Google Scholar 

  23. Movsesian AM, Bristow MR, Krall J: Ca2+ uptake by cardiac sarcoplasmic reticulum from patients with idiopathic dilated cardiomyopathy. Circ Res 65: 1141–1144, 1989

    Google Scholar 

  24. Linck B, Boknik P, Eschenhagen T, Mü ller FU, Neumann J, Nose M, Jones LR, Schmitz W, Scholz H: Messenger RNA expression and immunological quantification of phospholamban and SR-Ca2+-ATPase in failing and non-failing human hearts. Cardiovasc Res 31: 625–632, 1996

    Google Scholar 

  25. Sham SJK, Jones LR, Morad M: Phospholamban mediated β-adrenergic enhanced Ca2+ uptake in mammalian ventricular myocytes. Am J Physiol 261: H1344–H1349, 1991

    Google Scholar 

  26. Schwinger RHG, Mü nch G, Bö lck B, Karczewski P, Krause EG, Erdmann E: Reduced Ca2+-sensitivity of SERCA 2a in failing human myocardium due to reduced serin-16 phospholamban phosphorylation. J Mol Cell Cardiol 31: 479–491, 1999

    Google Scholar 

  27. Bö hm M, Reiger B, Schwinger R, Erdmann E: cAMP concentrations, cAMP dependent protein kinase activity, and phospholamban in nonfailing and failing myocardium. Cardiovasc Res 28: 1713–1719, 1994

    Google Scholar 

  28. Kirchhefer U, Schmitz W, Scholz H, Neumann J: Activity of cAMP-dependent protein kinase and Ca2+/calmodulin-dependent protein kinase in failing and non-failing human hearts. Cardiovasc Res 42: 254–261, 1999

    Google Scholar 

  29. McDougall LK, Jones LR, Cohen PK: Identification of the major protein phosphatases in mammalian cardiac muscle which dephosphorylate phospholamban. Eur J Biochem 196: 725–734, 1991

    Google Scholar 

  30. Neumann J, Eschenhagen T, Jones LR, Linck B, Schmitz W, Scholz H, Zimmermann N: Increased expression of cardiac phosphatases in patients with end-stage heart failure. J Mol Cell Cardiol 29: 265–272, 1997

    Google Scholar 

  31. Neumann J, Maas R, Bokní k P, Jones LR, Zimmermann N, Scholz H: Pharmacological characterization of protein phosphatase activities in preparations from failing human hearts. J Pharmacol Exp Ther 289: 188–193, 1999

    Google Scholar 

  32. Huke S, Bokní k P, Knapp J, Linck B, Lü ss H, Mü ller FU, Schmitz W, Suzuki Y, Vahlensieck U, Neumann J, DePaoli-Roach AA: Cardiac overexpression of catalytic subunit of phosphatase 1. Z Kardiol 88(suppl 1): (abstr) 47, 1999

    Google Scholar 

  33. Hoch B, Meyer R, Hetzer R, Krause EG, Karczewski P: Identification and expression of d-isoforms of the multifunctional Ca2+/calmodulindependent protein kinase in failing and non-failing human myocardium. Circ Res 84: 713–721, 1999

    Google Scholar 

  34. Force T, Hajjar R, Del Monte F, Rosenzweig A, Choukroun G: Signaling pathways mediating the response to hypertrophic stress in the heart. Gene Expr 7: 337–348, 1999

    Google Scholar 

  35. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN: A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93: 215–228, 1998

    Google Scholar 

  36. Olson EN, Molkentin JD: Prevention of cardiac hypertrophy by calcineurin inhibition: Hope or hype? Circ Res 84: 623–632, 1999

    Google Scholar 

  37. Katz AM: The cardiomyopathy of overload: an unnatural growth response in the hypertrophied heart. Ann Int Med 121: 363–371, 1994

    Google Scholar 

  38. Anonymous: The cardiac insufficiency bisoprolol study II (CIBIS-II): A randomised trial. Lancet 353(9146): 9–13, 1999

    Google Scholar 

  39. Mende U, Eschenhagen T, Geertz B, Schmitz W, Scholz H, Schulte AM Esch J, Sempell R, Steinfath M: Isoprenaline-induced increase in the 40/41 kDa pertussis toxin substrates and functional consequences on the contractile response in rat heart. Naunyn-Schmiedeberg's Arch Pharmacol 345: 44–50, 1992

    Google Scholar 

  40. Eschenhagen T, Mende U, Diederich M, Nose M, Schmitz W, Scholz H, Schulte am Esch J, Warnholtz A, Schäfer H: Long-term β-adrenoceptor mediated upregulation of G and G mRNA levels and pertussis toxin-sensitive guanine nucleotide-binding proteins in rat heart. Mol Pharm 42: 773–783, 1992

    Google Scholar 

  41. Mü ller FU, Boheler KR, Eschenhagen T, Schmitz W, Scholz H: Isoprenaline stimulates gene transcription of the inhibitory G protein asubunit Giα-2 in rat heart. Circ Res 72: 696–700, 1993

    Google Scholar 

  42. Mü ller FU, Eschenhagen T, Reidemeister A, Schmitz W, Scholz H: In vivo β-adrenergic stimulation leads to biphasic regulation of Giα-2 gene transcriptional activity in rat heart. J Mol Cell Cardiol 26: 869–875, 1994

    Google Scholar 

  43. Meyer TE, Habener JF: Cyclic adenosine 3′,5′-monophosphate response element binding protein (CREB) and related transcription-activating deoxy-ribonucleic acid-binding proteins. Endocrine Rev 14: 269–290, 1993

    Google Scholar 

  44. Delmas V, Molina CA, Lalli E, de Groot R, Foulkes NS, Masquilier D, Sassone-Corsi P: Complexity and Versatility of the transcriptional response to cAMP. Rev Physiol Biochem Pharmacol 124: 1–28, 1994

    Google Scholar 

  45. Janknecht R, Hunter T: Transcription: A growing coactivator network. Nature 383: 22–23, 1996

    Google Scholar 

  46. Montminy M: Transcriptional regulation by cyclic AMP. Annu Rev Biochem 66: 807–822, 1997

    Google Scholar 

  47. Hoeffler JP, Meyer TE, Waeber G, Habener JF: Multiple adenosine 3′, 5′-monophosphate response element DNA-binding proteins generated by gene diversification and alternative exon splicing. Mol Endocrinol 4: 920–930, 1990

    Google Scholar 

  48. Foulkes NS, Borrelli E, Sassone-Corsi P: CREM gene: Use alternative DNA-binding domains generates multiple antagonists of cAMPinduced transcription. Cell 64: 739–749, 1991

    Google Scholar 

  49. Foulkes NS, Mellströ m B, Benusiglio E, Sassone-Corsi P: Developmental switch of CREM function during spermatogenesis: From antagonist to activator. Nature 355: 80–84, 1992

    Google Scholar 

  50. Waeber G, Habener JF: Novel testis germ cell-specific transcript of the CREB gene contains an alternatively spliced exon with multiple inframe stop codons. Endocrinology 131: 2010–2015, 1992

    Google Scholar 

  51. Walker WH, Sanborn BM, Habener JF: An isoform of transcription factor CREM expressed during spermatogenesis lacks the phosphorylation domain and represses cAMP-induced transcription. Proc Natl Acad Sci USA 91: 12423–12427, 1994

    Google Scholar 

  52. Walker WH, Girardet C, Habener JF: Alternative exon splicing controls a transcriptional switch from activator to repressor isoforms of transcription factor CREB during spermatogenesis. J Biol Chem 271: 20145–20150, 1996

    Google Scholar 

  53. Gellersen B, Kempf R, Telgmann R: Human endometrial stromal cells express novel isoforms of the transcriptional modulator CREM and regulate ICER in the course of decidualization. Mol Endocrinol 11: 97–113, 1997

    Google Scholar 

  54. Molina CA, Foulkes NS, Lalli E, Sassone-Corsi P: Inducibility and negative autoregulation of CREM: An alternative promoter directs the expression of ICER, an early response repressor. Cell 75: 875–886, 1993

    Google Scholar 

  55. Stehle JH, Foulkes NS, Molina CA, Simmoneaux V, Pé vet P, Sassone-Corsi P: Adrenergic signals direct rhythmic expression of transcriptional repressor CREM in the pineal gland. Nature 365: 314–320, 1993

    Google Scholar 

  56. Girardet C, Walker WH, Habener JF: An alternatively spliced poly17 cistronic mRNA encoding cyclic adenosine 3′,5′-monophosphate (cAMP)-responsive transcription factor CREB (cAMP response element binding protein) in human testis extinguishes expression of an internally translated inhibitor CREB isoform. Mol Endocrinol 10: 879–891, 1996

    Google Scholar 

  57. Mü ller FU, Bokní k P, Knapp J, Neumann J, Vahlensieck U, Oetjen E, Scheld HH, Schmitz W: Identification and expression of a novel isoform of the cAMP-response element modulator in the human heart. FASEB J 12: 1191–1199, 1998

    Google Scholar 

  58. Gonzalez GA, Montminy M: Cyclic AMP stimulates somatostatin gene transcription by phosphorylation at serine 133. Cell 59: 675–680, 1989

    Google Scholar 

  59. Sheng M, Thompson MA, Greenberg ME: CREB: A Ca2+-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252: 1427–1430, 1991

    Google Scholar 

  60. Impey S, Wayman G, Wu Z, Storm DR: Type I adenylyl cyclase functions as a coincidence detector for control of cyclic AMP response element-mediated transcription. Mol Cell Biol 14: 8272–8281, 1994

    Google Scholar 

  61. deGroot RP, den Hertog J, Vandenheede JR, Goris J, Sassone-Corsi: Multiple and cooperative phosphorylation events regulate the CREM activator function. EMBO J 12: 3903–3911, 1993

    Google Scholar 

  62. Fiol CJ, Williams JS, Chou CH, Wang QM, Roach PJ, Andrisani OM: A secondary phosphorylation of CREB341 at Ser 129 is required for the cAMP-mediated control of gene expression. J Biol Chem 269: 32187–32193, 1994

    Google Scholar 

  63. Gonzalez GA, Menzel P, Leonard J, Fischer WH, Montminy MR: Characterization of motifs which are critical for activity of the cyclic AMPresponsive transcription factor CREB. Mol Cell Biol 11: 1306–1312, 1991

    Google Scholar 

  64. Liu F, Thompson MA, Wagner S, Greenberg ME, Green MR: Activating transcription factor-1 can mediate Ca(2+)-and cAMP-inducible transcriptional activation. J Biol Chem 268: 6714–6720, 1993

    Google Scholar 

  65. Hagiwara M, Brindle P, Harootunian A, Armstrong R, Rivier J, Vale W, Tsien R, Montminy MR: Coupling of hormonal stimulation and transcription via the cyclic AMP-responsive factor CREB is rate limited by nuclear entry of protein kinase A. Mol Cell Biol 13: 4852–4859, 1993

    Google Scholar 

  66. Hagiwara M, Alberts A, Brindle P, Meinkoth J, Feramisco J, Deng T, Karin M, Shenolikar S, Montminy M: Transcriptional attenuation following cAMP induction requires PP-1-mediated dephosphorylation of CREB. Cell 70: 105–113, 1992

    Google Scholar 

  67. Armstrong R, Wen W, Meinkoth J, Taylor S, Montminy M: A refractory phase in cyclic AMP-responsive transcription requires down regulation of protein kinase A. Mol Cell Biol 15: 1826–1832, 1995

    Google Scholar 

  68. Walker WH, Fucci L, Habener JF: Expression of the gene encoding transcription factor cyclic adenosine 3′,5′-monophosphate (cAMP) response element-binding protein (CREB): Regulation by follicle stimulating hormone-induced cAMP signaling in primary rat Sertoli cells. Endocrinology 136: 3534–3545, 1995

    Google Scholar 

  69. Goldspink PH, Russell B: The cAMP response element binding protein is expressed and phosphorylated in cardiac myocytes. Circ Res 74: 1042–1049, 1994

    Google Scholar 

  70. Mü ller FU, Bokní k P, Horst A, Knapp J, Linck B, Schmitz W, Vahlensieck U, Bö hm M, Deng MC, Scheld HH: The cAMP response element binding protein is expressed and phosphorylated in the human heart. Circulation 92: 2041–2043, 1995

    Google Scholar 

  71. Fentzke RC, Korcarz CE, Lang RM, Lin H, Leiden JM: Dilated cardiomyopathy in transgenic mice expressing a dominant-negative CREB transcription factor in the heart. J Clin Invest 101: 2415–2426, 1998

    Google Scholar 

  72. Meyer TE, Waeber G, Lin J, Beckmann W, Habener JF: The promoter of the gene encoding 3′, 5′-cyclic adenosine monophosphate (cAMP) response element binding protein contains cAMP response elements: Evidence for positive autoregulation of gene transcription. Endocrinol 132: 770–780, 1993

    Google Scholar 

  73. Mü ller FU, Bokní k P, Horst A, Knapp J, Linck B, Schmitz W, Vahlensieck U, Walter A: In vivo isoproterenol stimulation leads to downregulation of the mRNA encoding the cAMP response element binding protein in the rat heart. Biochem Biophys Res Comm 215: 1043–1049, 1995

    Google Scholar 

  74. Mü ller FU, Bokní k P, Knapp J, Lü ss H, Neumann J, Vahlensieck U, Bö hm M, Deng MC, Scheld HH, Schmitz W: Quantification of the cAMP response element binding protein in ventricular nuclear protein from failing and non-failing human hearts. Biochem Biophys Res Comm 236: 351–354, 1997

    Google Scholar 

  75. Folco EJ, Koren G: Degradation of the inducible cAMP early repressor (ICER) by the ubiquitin-proteasome pathway. Biochem J 328: 37–43, 1997

    Google Scholar 

  76. Collins S, Ostrowski J, Lefkowitz RJ: Cloning and sequence analysis of the human β1-adrenergic receptor 5′-flanking promoter region. Biochim Biophys Acta 1172A: 171–174, 1993

    Google Scholar 

  77. Collins S, Altschmied J, Herbsman O, Caron MG, Mellon PL, Lefkowitz RJ: A cAMP response element in the β2-adrenergic receptor gene confers transcriptional autoregulation by cAMP. J Biol Chem 265: 19330–19335, 1990

    Google Scholar 

  78. Toyofuku T, Zak R: Characterization of cDNA and genomic sequences encoding chicken phospholamban. J Biol Chem 266: 5375–5383, 1991

    Google Scholar 

  79. Johns DC, Feldman AM: Identification of a highly conserved region at the 5′ flank of the phospholamban gene. Biochem Biophys Res Commun 188: 927–933, 1992

    Google Scholar 

  80. Nowak I, Seipel K, Schwarz M, Jans DA, Hemmings BA: Isolation of a cDNA and characterization of the 5′ flanking region of the gene encoding the type I regulatory subunit of the cAMP-dependent protein kinase. Eur J Biochem 167: 27–33, 1987

    Google Scholar 

  81. Khew-Goodall Y, Mayer RE, Maurer F, Stone SR, Hemmings BA: Structure and transcriptional regulation of protein phosphatase 2A catalytic subunit genes. Biochemistry 30: 89–97, 1990

    Google Scholar 

  82. Zhang R, Min W, Sessa WC: Functional analysis of the human endothelial nitric oxide synthase promoter. Sp1 and GATA factors are necessary for basal transcription in endothelial cells. J Biol Chem 270: 15320–15326, 1995

    Google Scholar 

  83. Mori Y, Matsubara H, Folco E, Siegel A, Koren G: The transcription of a mammalian voltage-gated potassium channel is regulated by cAMP in a cell-specific manner. J Biol Chem 268: 26482–26493, 1993

    Google Scholar 

  84. Cornelius T, Holmer SR, Mü ller FU, Riegger GAJ, Schunkert H: Regulation of the gene for the rat atrial natriuretic peptide after acute imposition of left ventricular overload. Hypertension 30: 1348–1355, 1997

    Google Scholar 

  85. Lafyatis R, Lechleider R, Kim SJ, Jakowlew S, Roberts AB, Sporn MB: Structural and functional characterization of the transforming growth factor β3 promoter: A cAMP-responsive element regulates basal and induced transcription. J Biol Chem 265: 19128–19136, 1990

    Google Scholar 

  86. Sassone-Corsi P, Visvader J, Ferland L, Mellon PL, Verma IM: Induction of proto-oncogene fos transcription through the adenylate cyclase pathway: Characterization of a cAMP-responsive element. Genes Dev 2: 1529–1538, 1988

    Google Scholar 

  87. Eschenhagen T, Friedrichsen M, Gsell S, Hollmann A, Mittmann C, Schmitz W,Scholz H, Weil J, Weinstein LS: Regulation of the human Gi alpha-2 gene promotor activity in embryonic chicken cardiomyocytes. Bas Res Cardiol 91(suppl 2): 41–46, 1996

    Google Scholar 

  88. Oetjen E, Diedrich T, Eggers A, Eckert B, Knepel W: Distinct properties of the cAMP-responsive element of the rat insulin I gene. J Biol Chem 269: 27036–27044, 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, F., Neumann, J. & Schmitz, W. Transcriptional regulation by cAMP in the heart. Mol Cell Biochem 212, 11–17 (2000). https://doi.org/10.1023/A:1007176030884

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007176030884

Navigation