Skip to main content
Log in

Permeable Endothelium and the Interstitial Space of Brain

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. Fenestrated vessels can be reversibly induced in brain by agents that stimulate urokinase production. This plasminogen activator, like vascular endothelial growth factor and metalloproteinases, is secreted by tumor cells and may account for induction of fenestrated vessels. Why only some of the brain's barrier vessels are converted to fenestrated vessels is unknown.

2. The structures responsible for the filtering of solutes by fenestrated vessels may be the same as those of continuous, less permeable vessels: the glycocalyx on the surfaces of the endothelial cells and the subendothelial basal lamina.

3. Solutes leaving the cerebral ventricles immediately enter the interstitial clefts between the cells lining the ventricles. A fraction of a variety of solutes, injected into CSF compartments, is retained by subendothelial basal lamina, from which the solutes may be released in a regulated way.

4. The brain's CSF and interstitial clefts are the conduits for nonsynaptic volume transmission of diffusible signals, e.g., ions, neurotransmitters, and hormones. This type of transmission could be abetted by a parallel, cell-to-cell volume transmission mediated by gap junctions between astrocytes bordering CSF compartments and parenchymal astrocytes.

5. The width and contents of the interstitial clefts in fetal brain permit cell migration and outgrowth of neurites. The contents of the narrower and different interstitial clefts of mature brain permit solute convection but must be enzymatically degraded in order for cells to migrate through it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Adamson, R. H. (1990). Permeability of frog mesenteric capillaries after partial pronase digestion of the endothelial glycocalyx. J. Physiol. 428:1-13.

    Google Scholar 

  • Asher, R., Perides, G., Vanderhaeghen, J.-J., and Bignami, A. (1991). Extracellular matrix of central nervous system white matter: Demonstration of an hyaluronate-protein complex. J. Neurosci. Res. 28:410-421.

    Google Scholar 

  • Beck, T., Lindholm, D., Castrén, E., and Wree, A. (1994). Brain-derived neurotrophic factor protects against ischemic cell damage in rat hippocampus. J. Cer. Blood Flow Metab. 14:689-692.

    Google Scholar 

  • Bernstein, J. J., and Woodward, C. A. (1995). Glioblastoma cells do not intravasate into blood vessels. Neurosurgery 36:124-132.

    Google Scholar 

  • Bignami, A., and Asher, R. (1992). Some observations on the localization of hyaluronic acid in adult, newborn and embryonal rat brain. Int. J. Dev. Neurosci. 10:45-57.

    Google Scholar 

  • Bignami, A., and Dahl, D. (1994). Glial Cells in the Central Nervous System and Their Reaction to Injury, Medical Intelligence Unit, R. G. Landes, Austin, TX, p. 109.

    Google Scholar 

  • Blasberg, R. G., Patlack, C., and Fenstermacher, J. D. (1975). Intrathecal chemotherapy: Brain tissue profiles after ventriculo-cisternal perfusion. J. Pharmacol. Exp. Ther. 195:73-83.

    Google Scholar 

  • Bosman, F. T., Havenith, M., and Cleutjens, J. P. (1985). Basement membranes in cancer. Ultrastruct. Pathol. 8:291-304.

    Google Scholar 

  • Brightman, M. W. (1965a). The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. I. Ependymal distribution. J. Cell Biol. 26:99-123.

    Google Scholar 

  • Brightman, M. W. (1965b). The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. II. Parenchymal distribution. Am. J. Anat. 117:193-219.

    Google Scholar 

  • Brightman, M. W. (1968). The intracerebral movement of proteins injected into blood and cerebrospinal fluid of mice. Prog. Brain Res. 29:19-37.

    Google Scholar 

  • Brightman, M. W., and Reese, T. S. (1969). Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40:648-677.

    Google Scholar 

  • Broadwell, R. D. (1992). Pathways into, through, and around the fluid-brain barriers. NIDA Res. Monogr. 120:230-258.

    Google Scholar 

  • Broadwell, R. W., and Sofroniew, M. V. (1993). Serum proteins bypass the blood brain fluid barriers for extracellular entry to the central nervous system. Exp. Neurol. 120:245-263.

    Google Scholar 

  • Casley-Smith, J. R., and Mart, P. E. (1970). The relative antiquity of blood capillaries and lymphatics, and their significance for the uptake of large molecules: An electron microscopical investigation in an elasmobranch. Experientia (Separatum) 26:508-510.

    Google Scholar 

  • Cifuentes, M., Fernandez-Llebrez, P., Perez, J., Perez-Fiares, J. M., and Rodriguez, E. M. (1992). Distribution of intraventricularly injected horseradish peroxidase into cerebrospinal compartments of the rat spinal cord. Cell Tissue Res. 270:485-494.

    Google Scholar 

  • Clough, G. (1991). Relationship between microvascular permeability and ultrastructure. Prog. Biophys. Mol. Biol. 55:47-69.

    Google Scholar 

  • Coomber, B. L., Stewart, P. A., Hayakawa, E. M., Farrell, C. L., and Del Maestro, R. F. (1988). A quantitative assessment of microvessels ultrastructure in C6 astrocytoma spheroids transplanted to brain and to muscle. J. Neuropathol. Exp. Neurol. 47:29-40.

    Google Scholar 

  • Cornell-Bell, A. H., Finkbeiner, M. S., Cooper, M. S., and Smith, S. J. (1990). Glutamate induces calcium waves in cultured astrocytes:Long-range glial signaling. Science 247:470-473.

    Google Scholar 

  • Cserr, H. F, Cooper, D. N., Suri, P. K., and Patlack, C. S. (1981). Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am. J. Physiol. 240:F319-F328.

    Google Scholar 

  • Debbage, P. L. (1996). A systematic histochemical investigation in mammals of the dense glycocalyx glycosylations common to all cells bordering the interstitial fluid compartment of the brain. Acta Histochem. 98:9-28.

    Google Scholar 

  • Dermietzel, R. (1998). Gap junction wiring: A “new” principle in cell-to-cell communication in the nervous system? Brain Res. Rev. 26:176-183.

    Google Scholar 

  • Dermietzel, R., Thurauf, N., and Kalweit, P. (1983). Surface charges associated with fenestrated brain capillaries. II. In vivo studies on the role of molecular charge in endothelial permeability. J. Ultrastruct. Res. 84:111-119.

    Google Scholar 

  • Dobrogowska, D. H., Lossinsky, A. S., Tarnawski, M., and Vorbrodt, A. W. (1998). Increased bloodbrain barrier permeability and endothlelial abnormalities induced by vascular endothelial growth factor. J. Neurocytol. 27:163-173.

    Google Scholar 

  • Dunker, R. O., Harris, A. B., and Jenkins, D. P. (1976). Kinetics of horseradish peroxidase migration through cerebral cortex. Brain Res. 118:199-217.

    Google Scholar 

  • Enkvist, M. O., and McCarthy, K. D. (1994). Astroglial gap junction communication is increased by treatment with either glutamate or high K+ concentration. J. Neurochem. 62:489-495.

    Google Scholar 

  • Esser, S., Wolburg, K., Wolburg, H., Breier, G., Kurzchalia, T., and Risau, W. (1998). Vascular endothelial growth factor induces endothelial fenestrations in vitro. J. Cell Biol. 140:947-959.

    Google Scholar 

  • Evered, D., and Whelan, J. (eds.) (1989). TheBiology of Hyaluronan, Ciba Foundation, Wiley, Chichester.

    Google Scholar 

  • Fang, J., Wang, Y., and Krueger, J. M. (1998). Effects of interleukin-1β on sleep are mediated by the type I receptor. Am. J. Physiol. 274:R655-R660.

    Google Scholar 

  • Fenstermacher, J. D., Ghersi-Egea, J. F., Finnegan, W., and Shen, J. L. (1997). The rapid flow of cerebrospinal fluid from ventricles to cisterns via subarachnoid velae in the normal rat. Acta Neurochir. Suppl. (Wien) 70:285-287.

    Google Scholar 

  • Gash, D., Sladek, J. R., Jr., and Sladek, C. D. (1980). Functional development of grafted vasopressin neurons. Science 210:1367-1369.

    Google Scholar 

  • Giese, A., Rief, M. D., Loo, M. A., and Berens, M. E. (1994). Determinants of human astrocytoma migration. Cancer Res. 54:3897-3904.

    Google Scholar 

  • Gross, P. M., Sposito, N. M., Pettersen, S. E., and Fenstermacher, J. D. (1986). Differences in function and structure of the capillary endothelium in gray matter, white matter and a circumventricular organ of rat brain. Blood Vessels 23:261-270.

    Google Scholar 

  • Guan, X., Cravatt, B. F., Ehring, G. R., Hall, J. E., Boger, D. L., Lerner, R. A., and Gilula, N. B. (1997). The sleep-inducing lipid oleaminde deconvolutes gap junctions communication and calcium wave transmission in glial cells. J. Cell Biol. 139:1785-1792.

    Google Scholar 

  • Herron, G. S., Banda, M. J., Clark, E. J., Gavrilovic, J., and Werb, Z. (1986). Secretion of metalloproteinases by stimulated capillary endothelial cells. J. Biol. Chem. 261:2814-2818.

    Google Scholar 

  • Hirano, A., and Matsui, T. (1975). Vascular structures in brain tumors. Hum. Pathol. 6:611-621.

    Google Scholar 

  • Hoffman, D., Breakefield, X. O., Short, M. P., and Aebischer, P. (1993). Transplantation of a polymerencapsulated cell line genetically engineered to release NGF. Exp. Neurol. 122:100-106.

    Google Scholar 

  • Jaeger, C. B. (1987). Morphological and immunocytochemical characteristics of PC12 cell grafts in rat brain. Ann. N.Y. Acad. Sci. 495:334-350.

    Google Scholar 

  • Kaya, M., Chang, L., Truong, A., and Brightman, M. W. (1996). Chemical induction of fenestrae in vessels of the blood-brain barrier. Exp. Neurol. 142:6-13.

    Google Scholar 

  • Kooistra, T. J., Opdenberg, J. P., Toet, K., Hendricks, H. F. J., Van den Hoogen, R. M., and Emeis, J. J. (1991). Stimulation of tissue-type plasminogen activator synthesis by retinoids in cultured human endothelial cells and rat tissue in vivo. Thromb. Haemostas. 65:565-572.

    Google Scholar 

  • Krueger, J. M., Obal, F., Opp, M., Toth, L., Johannsen, L., and Cady, A. B. (1990). Somnogenic cytokines and models concerning their effects on sleep. Yale J. Biol. Med. 63:157-172.

    Google Scholar 

  • Laske, D. W., Morrison, P. E., Lieberman, M., Corthesy, M. E., Reynolds, J. C., Stewart-Henney, P. A., Koong, S.-S., Cummins, A., Paik, C. H., and Oldfield, E. H. (1997). Chronic interstitial infusion of protein to primate brain: Determination of drug distribution and clearance with single photon emission computerized tomography imaging. J. Neurosurg. 87:586-594.

    Google Scholar 

  • Laws, E. R., Jr., Goldberg, W. J., and Bernstein, J. J. (1993). Migration of human malignant astrocytoma cells in the mammalian brain: Scherer revisited. Int. J. Dev. Neurosci. 11:691-697.

    Google Scholar 

  • Levick, J. R., and Smaje, L. H. (1987). An analysis of the permeability of a fenestra. Microvasc. Res. 33:233-256.

    Google Scholar 

  • Lund-Johansen, M., Rucklidge, G. J., Milne, G., and Bjerkvig, R. (1991). A metalloproteinase capable of destroying cultured brain tissue isolated from rat glioma cells. Anticancer Res. 11:1001-1006.

    Google Scholar 

  • McBain, C. J., Traynelis, S. F., and Dingledine, R. (1990). Regional variation of extracellular space in the hippocampus. Science 249:674-677.

    Google Scholar 

  • Milhorat, T. H., Nobandegani, F., Miller, J. I., and Rao, C. (1993). Noncommunicating syringomyelia following occlusion of central canal in rats. J. Neurosurg. 78:274-279.

    Google Scholar 

  • Morrow, B. A. Starcevic, V. P., Keil, L. C., and Severs, W. B. (1990). Intracranial hypertension after cerebroventricular infusions in conscious rats. Am. J. Physiol. 258:R1170-R1176.

    Google Scholar 

  • Naparstek, Y., Cohen, I. R., Fuks, Z. V. I., and Vlodavsky, I. (1984). Activated T lymphocytes produce a matrix-degrading heparan sulphate endoglycosidase. Nature 310:241-244.

    Google Scholar 

  • Nicholson, C., and Rice, M. E. (1986). The migration of substances in the neuronal microenvironment. Ann. N.Y. Acad. Sci. 481:55-71.

    Google Scholar 

  • Pappas, G. D., and Sagen, J. (1988). Fine structural correlates of vascular permeability of chromaffin cell transplants in CNS pain modulatory regions. Exp. Neurol. 102:280-289.

    Google Scholar 

  • Pino, R. M., and Essner, E. (1981). Permeability of rat choriocapillaris to hemoproteins. Restriction of tracers by fenestrated endothelium. J. Histochem. Cytochem. 29:281-290.

    Google Scholar 

  • Reith, A., and Rucklidge, G. J. (1992). Invasion of brain tissue by primary glioma: Evidence for the involvement of urokinase-type plasminogen activator as an activator of type IV collagenase. Biochem. Biophys. Res. Commun. 186:348-354.

    Google Scholar 

  • Renkin, E. M. (1992). Cellular and intercellular transport pathways in exchange vessels. Am. Rev. Respir. Dis. 146:S28-S31.

    Google Scholar 

  • Rennels, M. L., Gregory, T. F., Blaumanis, O. R., Fujimoto, K., and Grady, P. A. (1985). Evidence for a paravascular fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 326:47-63.

    Google Scholar 

  • Roberts, W. G., and Palade, G. E. (1995). Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J. Cell Sci. 108:2369-2379.

    Google Scholar 

  • Rosenstein, J. M., and Brightman, M. W. (1983). Circumventing the blood-brain barrier with autonomic grafts to brain surfaces. Science 221:879-881.

    Google Scholar 

  • Sawaya, R., and Highsmith, R. (1988). Plasminogen activator activity and molecular weight patterns in human brain tumors. J. Neurosurg. 68:73-79.

    Google Scholar 

  • Silver, R., LeSauter, J. L., Tresco, P. A., and Lehman, M. N. (1996). A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382:810-813.

    Google Scholar 

  • Stewart, P. A., and Hayakawa, K. (1994). Early ultrastructural changes in blood-brain barrier vessels of the rat embryo. Dev. Brain Res. 78:25-34.

    Google Scholar 

  • Stoodley, M. A., Jones, N. R., and Brown, C. J. (1996). Evidence for rapid fluid flow from the subarachnoid space into the spinal central canal in the rat. Brain Res. 707:155-164.

    Google Scholar 

  • Timpl, R. (1994). Proteoglycans of basement membranes. EXS 70:123-144.

    Google Scholar 

  • Toole, B. P., Goldberg, R. L., Chi-Rosso, G., Underhill, C. B., and Orkin, R. W. (1984). Hyaluronate cell interactions. In Trelstad, R. L. (ed.), The Role of Extracellular Matrix in Development, Alan Liss, New York, pp. 43-66.

    Google Scholar 

  • Unemori, E. N., Ferrara, N., Bauer, E. A., and Amento, P. (1992). Vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cells. J. Cell. Physiol. 153:557-562.

    Google Scholar 

  • Vladovsky, I., Miao, H. Q., Medalion, B., Danagher, P., and Ron, D. (1996). Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblastic growth factor. Cancer Metastas. Rev. 15:177-186.

    Google Scholar 

  • Wakai, S., Meiselman, S., and Brightman, M. W. (1986). Muscle grafts as entries of blood-borne proteins into the extracellular space of the brain. Neurosurgery 18:548-554.

    Google Scholar 

  • Weindl, A. (1973). Neuroendocrine aspects of circumventricular organs. In Ganong, W. F., and Martini, L. (eds.), Frontiers in Neuroendocrinology, Oxford Press, New York, pp. 3-32.

    Google Scholar 

  • Yan, Q., Matheson, C., Sun, J., Radeke, M. J., Feinstein, S. C., and Miller, J. A. (1994). Distribution of intracerebral ventricularly administered neurotrophins in rat brain and its correlation with Trk receptor expression. Exp. Neurol. 127:23-36.

    Google Scholar 

  • Yanagishita, M. (1993). Function of proteoglycans in the extracellular matrix. Acta Pathol. Jpn. 43:283-293.

    Google Scholar 

  • Yang, P., Yin, X., and Rutishauser, U. (1992). Intercellular space is affected by the polysialic acid content of NCAM. J. Cell Biol. 116:1487-1496.

    Google Scholar 

  • Yoshida, Y., Yamada, M., Wakabayashi, K., and Ikuta, F. (1988). Endothelial fenstrae in the rat fetal cerebrum. Dev. Brain Res. 44:211-219.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brightman, M.W., Kaya, M. Permeable Endothelium and the Interstitial Space of Brain. Cell Mol Neurobiol 20, 111–130 (2000). https://doi.org/10.1023/A:1006944203934

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006944203934

Navigation