Advertisement

GeoJournal

, Volume 44, Issue 2, pp 111–120 | Cite as

Global warming, rising sea level, and growing risk of cholera incidence: a review of the literature and evidence

  • René J. Borroto
Article

Abstract

The survival of Vibrio cholerae -the pathogen agent of cholera- in aquatic environments is linked to both abiotic and biotic ecological factors, which are likely to be influenced by global climate changes and the resulting rise in sea level. Yet little attention has been paid to the possible impacts of these predicted global environmental changes on water-borne diseases such as cholera. The probable ecological mechanisms to explain why cholera may increase if predicted global warming and sea level rise do occur have, as yet, not been addressed. The objective of this paper is to argue the hypothesis that the survival of Vibrio cholerae in aquatic environments may be favoured by global warming and flooding of low-lying coastal areas due to rising sea level. Those changes may enhance primary and secondary transmission of cholera in developing nations, particularly among populations settled in low-lying coastal areas of tropical regions. Primary transmission is also likely to increase in developed nations, mainly among populations living in low-lying coastal areas of subtropical and temperate regions, where new foci of hypoendemic cholera may appear. Nevertheless, if current high levels of hygienic standards in developed nations are relaxed, secondary transmission of cholera may also increase. The prediction and assessment of the potential impact of global climate change on cholera epidemic and endemic potential and its geographical distribution should consider the role of the aquatic reservoirs of Vibrio cholerae in the transmission and endemicity of cholera. The geographical distribution of cholera depends not only on social and cultural factors, but also on ecological variables. On the other hand, global climate changes may cause different impacts in different ecosystems and geographical landscapes. Hence it would be useful to calculate and map future cholera incidence rates for areas defined by natural boundaries, such as ecosystems and geographical landscapes, in search of space-time associations between cholera incidence rates and environmental changes.

cholera ecology global warming Vibrio cholerae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Organización Panamericana de la Salud. [Cholera situation in The Americas]. Boletin de la Oficina Sanitaria Panamericana. 119(4): 370–372 (in Spanish) (1995).Google Scholar
  2. 2.
    Baumann, P.; Schubert, R. Vol.I: Vibrionaceae. In: Krieg N., Holt J. (eds.), Bergey's Manual of Systematic Bacteriology. Baltimore: Williams and Wilkins; 1984.Google Scholar
  3. 3.
    Benenson, A.: [The control of transmisible diseases in man]. 15ta ed. Washington, D.C.: Organización Panamcricana de la Salud; 1992 (in Spanish).Google Scholar
  4. 4.
    Ramamurthy, T.; Grag, S.; Sharma, R. et al.: Emergence of a novel strain of Vibrio cholerae with epidemic potential in southern and eastern India. Lancet. 341(8846), 703–704 (1993).CrossRefGoogle Scholar
  5. 5.
    Cholera Working Group, International Centre for Diarrhoeal Disease Research, Bangladesh. Large epidemic of cholera-like disease in Bangladesh caused by Vibrio cholerae O139 synonym Bengal. Lancet. 342(8868): 387–390 (1993).CrossRefGoogle Scholar
  6. 6.
    Islam, M.; Hasan, M.; Miah, M.; Yunus, M.; Zaman, K.; Albert, M.: Isolation of Vibrio cholerae O139 synonym Bengal from the aquatic environment in Bangladesh: implications for disease transmission. Apphed and Environmental Microbiology. 60(5): 1684–1686 (1994).Google Scholar
  7. 7.
    Chongsa-Nguan, M.; Chaicumpa, W.; Moolasart, P.; Shimada, T.; Kurazono, H.; Takeda, Y.: Vibro cholerae O139 Bengal in Bangkok [letter to the editor]. Lancet. 342(8868): 430–431 (1993).CrossRefGoogle Scholar
  8. 8.
    Felsenfeld, O.: Review of recent trends in cholera research an control: with an annex on the isolation and identification of cholera vibrios. Bulletin of the World Health Organization. 34(2): 161–196 (1996).Google Scholar
  9. 9.
    Colwell, R.; Kaper, J.; Joseph, S.: Vibrio cholerae, Vibrio parahaemolyticus, and other vibrios: occurrence and distribution in Chesapeake Bay. Science. 198(4315): 394–396 (1977).Google Scholar
  10. 10.
    Rogers, R.; Cuffe, R.; Cossins, Y.; Murphy, D.; Bourke, A.: The Queensland cholera incident of 1977. 2. The epidemiological investigation. Bulletin of the World Health Organization. 58(4): 665–669 (1980).Google Scholar
  11. 11.
    Bourke, A.; Cossins, Y.; Gray, B.: Investigation of cholera acquired from the riverine environment in Queensland. Medical Journal of Australia. 144(5): 229–234 (1986).Google Scholar
  12. 12.
    Huq, A.; Colwell, R.; Rahman, R., et al.: Detection of Vibrio cholerae O1 in the aquatic environment by fluorescent-monoclonal antibody and culture methods. Applied and Environmental Microbiology. 56(8): 2370–2373 (1990).Google Scholar
  13. 13.
    Tamplin, M.; Carrillo, C.: Environmental spread of Vibrio cholerae in Perú [letter to the editor]. Lancet. 338(8876): 1216–1217 (1991).CrossRefGoogle Scholar
  14. 14.
    Islam, M.; Drasar, B.; Bradley Sack, R.: The aquatic environment as a reservoir of Vibrio cholerae: a review. Journal of Diarrhoeal Disease Research. 11(4): 197–206 (1993).Google Scholar
  15. 15.
    Rai, R.; Tripathy, V.; Joshi, R.: Persistence of Vibrio cholerae in interepidemic periods — preliminary observations on analysis of water. Journal of Community Disease. 23(1): 44–45 (1991).Google Scholar
  16. 16.
    Rhodes, J.; Smith, H. Jr.; Ogg, J.: Isolation of non-O1 Vibrio cholerae serovars from surface waters in western Colorado. Aplied and Environmental Microbiology. 51(6): 1216–1219 (1986).Google Scholar
  17. 17.
    Perez-Rosas, N., Hazen, T.: In situ survival of Vibrio cholerae and Escherichia coli in a tropical rainforest watershed. Applied and Environmental Microbiology. 55(2): 495–499 (1989).Google Scholar
  18. 18.
    Venkateswaran, K.; Kiiyukia, C.; Takaki, M., et al.: Characterization of toxigenic vibrios isolated from the freshwater environment of Hiroshima, Japan. Applied and Environmental Microbiology. 55(10): 2613–2618 (1989).Google Scholar
  19. 19.
    Colwell, R.; Huq, A.: Vibrios in the environment: viable but non-culturable Vibrio cholerae. In: Kaye Wachsmuth I., Blake P., Olsvik Ø. (eds.), Vibrio cholerae and cholera: molecular to global perspectives. Washington, DC: American Society for Microbiology. 117–133 (1994).Google Scholar
  20. 20.
    Glass, R.; Black, R.: The epidemiology of cholera. In: Barua, D., Greenough III W. (eds.), Cholera. New York: Plenum Medical Company. 129–154 (1992).Google Scholar
  21. 21.
    West, P.: The human pathogenic vibrios — A public health update with environmental perspectives. Epidemiology and Infection. 103(1): 1–34 (1989).CrossRefGoogle Scholar
  22. 22.
    Islam, M.; Drasar, B.; Bradley Sack, R.: The aquatic flora and fauna as reservoirs of Vibrio cholerae: a review. Journal of Diarrhoeal Disease Research. 12(2): 87–96 (1994).Google Scholar
  23. 23.
    Reeves, W.; Hardy, J.; Reisen, W.; Milby, M.: Potential effect of global warming on mosquito-borne arboviruses. Journal of Medical Entomology. 31(3): 323–332 (1994).Google Scholar
  24. 24.
    Martens, W.; Niessen, L.; Rotmans, J.; Jetten, T.; McMichael, A.: Potential impact of global climate change on malaria risk. Environmental Health perspectives 103(5): 458–464 (1995)Google Scholar
  25. 25.
    Bryan, J.; Foley, D.; Suthers, R.: Malaria transmission and climate change in Australia. Medical Journal of Australia. 164(6): 345–347 (1996).Google Scholar
  26. 26.
    Cross, E.; Hyams, K.: The potential effect of global warming on the geographic and seasonal distribution of Phlebotomous papatasi in Southwest Asia. American Journal of Tropical Medicine and Hygiene. 54(5): 530–536 (1996).Google Scholar
  27. 27.
    Patz, J.; Epstein, P.; Burke, T.; Balbus, J.: Global climate change and emerging infectious diseases. Journal of the American Medical Association. 275(3): 217–223 (1996).CrossRefGoogle Scholar
  28. 28.
    Schimel, D.; Alves, D.; Enting, I.; et al.: Radiative forcing of climate change. In. Houghton J., Meira Filho L., Callander B., Harris N., Kattenberg A., Maskell K. (eds.), Climate Change 1995. The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. 1st ed. Cambridge: Cambridge University Press. 65–131 (1996).Google Scholar
  29. 29.
    Nicholls, N.; Gruza, G.; Jouzel, J.; Karl, T.; Ogallo, L.; Parker, D.: Observed climate variability and change. In: Houghton J., Merra Filho L., Callander B., Harris N., Kattenberg A., Maskell K. (eds.), Climate Change 1995. The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. 1st ed. Cambridge: Cambridge University Press. 133–192 (1996).Google Scholar
  30. 30.
    Bray, D.: [Survey conducted among 400 climatologists. Cambio Climático. Boletín. 14(2): 7–8 (in Spanish) (1997).Google Scholar
  31. 31.
    Burrows, W.: Textbook of Microbiology. 21ma. ed. Philadelphia: Saunders; 1979.Google Scholar
  32. 32.
    Ananthanarayan, R.; Jayaram Paniker, C.: Textbook of Microbiology. 2nd. ed. New Delhi: Orient Longman; 1984.Google Scholar
  33. 33.
    Jawetz, E.; Melnick, J.; Adelberg, E.; Brooks, G.; Butel, J.; Nicholas Ornston, N.: [Medical Microbiology, 13ra ed. Mexico, D.F.: El Manual Moderno, S.A. de C.V.; (in Spanish) 1990.Google Scholar
  34. 34.
    Kaper, J.; Lockman, H.; Colwell, R.; Joseph, S.: Ecology, serology, and enterotoxin production of Vibrio cholerae in Chesapeake Bay. Applied and Environmental Microbiology. 37(1): 91–103 (1979).Google Scholar
  35. 35.
    West, P.; Lee, J.: Ecology of Vibrio species including Vibrio cholerae in natural waters of Kent, England. The Journal of Applied Bacteriology. 52(3): 435–448 (1982).Google Scholar
  36. 36.
    Lee, J.; Bashford, D.; Donovan, T.; Furniss, A.; West, P.: The incidence of Vibrio cholerae in water, animals, and birds in Kent. England. The Journal of Applied Bacteriology. 52(2): 281–291 (1982).Google Scholar
  37. 37.
    Weissman, J.: A case of cholera in Texas 1973. American Journal of Epidemiology. 100(6): 487–498 (1975).Google Scholar
  38. 38.
    Blake, P.: Cholera: a possible endemic focus in the United States. New England Journal of Medicine, 302(6): 305–309 (1980).CrossRefGoogle Scholar
  39. 39.
    Shandera, W.: Persistence of cholera in the US. American Journal of Tropical Medicine and Hygiene. 32(4): 812–817 (1983).Google Scholar
  40. 40.
    Johnston, J.; Martin, D.; Perdue, J.: Cholera on a Gulf Coast oil rig. New England Journal of Medicine. 309(4): 523–526 (1983).CrossRefGoogle Scholar
  41. 41.
    Baine, W.; Mazzotti, M.; Greco, D.; et al.: Epidemiology of cholera in Italy, 1973. Lancet. ii: 1370–1374 (1974).CrossRefGoogle Scholar
  42. 42.
    Salmaso, S.; Greco, D.; Bonglifio, B.; et al.: Recurrence of pelecypod-associated cholera in Sardinia. Lancet. ii: 1124–1127 (1980).CrossRefGoogle Scholar
  43. 43.
    Bourke, A.; Cossins, Y.; Gray, B.: Investigation of cholera acquired from the riverine environment in Queensland. Medical Journal of Australia. 144(5): 229–234 (1986).Google Scholar
  44. 44.
    Blake, P.; Rosenberg, M.; Florencia, J.; Bandeira Costa, J.; Do Prado Quintino, L.; Gangarosa, E.: Cholera in Portugal. 1974. I. Modes of transmission. American Journal of Epidemiology. 105(4): 344–348 (1977).Google Scholar
  45. 45.
    Singleton, F.; Attwell, R.; Jangi, M.; Colwell, R.: Influence of salinity and organic nutrient concentration on survival and growth of Vibrio cholerae in aquatic microcosms. Applied and Environmental Microbiology. 43(5): 1080–1085 (1982).Google Scholar
  46. 46.
    Miller, C.; Drasar, B.; Feachem, R.: Response of toxigenic Vibrio cholerae O1 to physico-chemical stress in aquatic environments. Journal of Hygiene. 93(3): 475–495 (1984).CrossRefGoogle Scholar
  47. 47.
    Miller, C.; Drasar, B.; Feachem, R.: Cholera and estuarine salinity in Calcutta and London. Lancet. i: 1216–1218 (1982).CrossRefGoogle Scholar
  48. 48.
    Warric, R.; LcProvost, C.; Meier, M.; Oerlemans, J.; Woodworth, P.: Changes in sea level. In: Houghton J., Meira Filho L., Callander B., Harris N., Kattenberg A., Maskell K. (eds.), Climate Change 1995. The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. 1st ed. Cambridge: Cambridge University Press. 359–405. 1996.Google Scholar
  49. 49.
    McKay, G.; Hengeveld, H.: The changing atmosphere. In: Mungall C., McLaren D. (eds.), Planet in Peril. 1st ed. Toronto: Oxford University Press. 46–79, 1991.Google Scholar
  50. 50.
    Colwell, R.; Brayton, P.; Grimes, D.; Roszak, D.; Huq, A.; Palmer, L.: Viable, but non-culturable Vibrio cholerae and related pathogens in the environment: implication for release of genetically engineered microorganisms. Bio/Technology. 3:817–820 (1985).CrossRefGoogle Scholar
  51. 51.
    Brayton, P.; Tamplin, M.; Huq, A.; Colwell, R.: Enumeration of Vibrio cholerae O1 in Bangladesh waters by fluorescent-antibody direct viable count. Applied and Environmental Microbiology. 53(12): 2862–2865 (1987).Google Scholar
  52. 52.
    Islam, M.; Drasar, B.; Bradley, D.: Attachment of toxigenic Vibrio cholerae O1 to various freshwater plants and survival with a filamentous green alga, Rhizoclonium fontanum. Journal of Tropical Medicine and Hygiene. 92(3): 396–401 (1989).Google Scholar
  53. 53.
    Tamplin, M.; Gauzens, A.; Huq, A.; Sack, D.; Colwell, R.: Attachment of Vibrio cholerae serogroup O1 to zooplankton and phytoplancton of Bangladesh waters. Applied and Environmental Microbiology. 56(6): 1977–1980 (1990).Google Scholar
  54. 54.
    Islam, M.; Miah, M.; Hasan, M.; Sack, R.; Albert, M.: Detection of non-culturable Vibrio cholerae O1 associated with a cyanobacterium from an aquatic environment in Bangladesh [short report]. Transactions of the Royal Society of Tropical Hygiene and Medicine. 88(3): 298–299 (1994).CrossRefGoogle Scholar
  55. 55.
    Huq, A.; Small, E.; West, P.; Huq M. Rahman, R.; Colwell, R.: Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Applied and Environmental Microbiology. 45(1): 275–283 (1983).Google Scholar
  56. 56.
    Miller, C.; Feachem, R.; Drasar, B.: Cholera epidemiology in developed and developing countries: new thoughts on transmission, seasonality, and control. Lancet. i: 261–263 (1985).CrossRefGoogle Scholar
  57. 57.
    Huq, A.; West, P.; Small, E.; Huq, M.; Colwell, R.: Influence of water temperature, salinity, and pH on survival and growth of toxigenic Vibrio cholerae serovar O1 associated with live cope-pods in laboratory microcosms. Applied and Environmental Microbiology. 48(2): 420–424 (1984).Google Scholar
  58. 58.
    ReVelle, P.; ReVelle, C.: The Environment: Issues and Choices for Society. 1st ed. New York: D. Van Nostrand Company: 1982.Google Scholar
  59. 59.
    Epstein, P.: Algal blooms in the spread and persistence of cholera. BioSystems. 31(2): 209–221 (1991).CrossRefGoogle Scholar
  60. 60.
    Hood, M.; Ness, G.; Rodrick, G.: Isolation of Vibrio cholerae serotype O1 from the eastern oyster, Crassostrea virginica. Applied and Environmental Microbiology. 41(2): 559–560 (1981).Google Scholar
  61. 61.
    Wilson, R.; Lieb, S., Roberts, A.; et al.: Non-O group 1 Vibrio cholerae gastroenteritis associated with cating raw oysters. American Journal of Epidemiology. 114(2): 293–298 (1981).Google Scholar
  62. 62.
    DePaola, A.; Capers, G.; Motes, M.: Isolation of Latin American epidemic strain of Vibrio cholerae O1 from US Gulf Coast. Lancet. 339(8793): 624 (1992).CrossRefGoogle Scholar
  63. 63.
    Joseph, P.; Tamayo, J.; Mosley, W.; Alvero, M.; Dizon, J.; Henderson, D.: Studies of cholera El Tor in the Philippines 2. A retrospective investigation of an explosive outbreak in Bacolod City and Talisay, November 1961. Bulletin of the World Health Organization. 33(5): 636–641 (1965).Google Scholar
  64. 64.
    Merson, M.; Martin, W.; Craig, J.; et al.: Cholera on Guam, 1974. American Journal of Epidemiology. 105(4): 349–361 (1977).Google Scholar
  65. 65.
    Campbell McIntyre, R.; Tira, T.; Flood, T.; Blake, P.: Modes of transmission of cholera in a newly infected population on an atoll. Implications for control measures. Lancet. i: 311–314 (1979).CrossRefGoogle Scholar
  66. 66.
    Willen, E.; Willen, T.: About freshwater phytoplankton. In: Sournia A. (ed). Phytoplankton Manual. 1st ed. Paris: UNESCO; 297–300, 1980.Google Scholar
  67. 67.
    Margalef, R.: [Ecology]. 1ra ed. Barcelona: Ediciones Omega, S.A.; 1974 (in Spanish).Google Scholar
  68. 68.
    Kaufman, D.; Franz, C.: Biosphere 2000. Protecting our global environment. 1st ed. New York: HarperCollins; 1993.Google Scholar
  69. 69.
    De Ville de Gollet, C.: [Preparations against natural disasters in The Americas, Presentación para cl II Congreso Nacional de Higiene y Epidemiología, La Habana, Cuba. Organización Panamericana de la Salud. Programa de Preparativos para Situaciones de Emergencia y Coordinación del Socorro en Casos de Desastre. Washington, D.C.; 1985 (in Spanish).Google Scholar
  70. 70.
    Organización Panamericana de la Salud: [Environmental health after the occurrence of natural disasters. Washington, D.C.: OPS; 1982 (Publicación científica 430) (in Spanish).Google Scholar
  71. 71.
    Kattenberg, A.; Giorgi, F.; Grassl. H.; et al.: Climate models — Projections of future climate. In: Houghton J., Meira Filho L., Callander B., Harris N., Kattenberg A., Maskell K. (eds.), Climate Change 1995. The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. 1st ed. Cambridge: Cambridge University Press: 285–357, 1996.Google Scholar
  72. 72.
    Gates, W.; Henderson-Seller, A.; Boer, G.; et al.: Climate models — Evaluation. In: Houghton J., Meira Filho L., Callander B., Harris, N., Kattenberg A., Maskell K. (eds.), Climate Change 1995. The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. 1st ed. Cambridge: Cambridge University Press: 229–284, 1996.Google Scholar
  73. 73.
    Epstein, P.: Emerging infections and global change: integrating health surveillance and environmental monitoring. Current Issues in Public Health. 1: 224–232 (1995).Google Scholar
  74. 74.
    Mausner, J.; Kramer, S.: Mausner and Bahn Epidemiology. An Introductory Text. 2nd ed. Philadelphia: W.B.Saunders: 1985.Google Scholar
  75. 75.
    Epstein, P.; Rogers, D.; Slooff, R.: Satellite imaging and vectorborne disease. Lancet. 341(8857): 1404–1406 (1993).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • René J. Borroto
    • 1
  1. 1.Department of Environmental StudiesInstitute of Tropical Geography, Ministry of Science, Technology and EnvironmentCuba

Personalised recommendations