International Journal of Thermophysics

, Volume 22, Issue 1, pp 111–122 | Cite as

Simulating Retention in Gas–Liquid Chromatography: Benzene, Toluene, and Xylene Solutes

  • C. D. Wick
  • M. G. Martin
  • J. I. Siepmann
  • M. R. Schure
Article

Abstract

Accurate predictions of retention times, retention indices, and partition constants are a long sought-after goal for theoretical studies in chromatography. Although advances in computational chemistry have improved our understanding of molecular interactions, little attention has been focused on chromatography, let alone calculations of retention properties. Configurational-bias Monte Carlo simulations in the isobaric–isothermal Gibbs ensemble were used to investigate the partitioning of benzene, toluene, and the three xylene isomers between a squalane liquid phase and a helium vapor phase. The united-atom representation of the TraPPE (transferable potentials for phase equilibria) force field was used for all solutes and squalane. The Gibbs free energies of transfer and Kovats retention indices of the solutes were calculated directly from the partition constants (which were averaged over several independent simulations). While the calculated Kovats indices of benzene and toluene at T=403 K are significantly higher than their experimental counterparts, much better agreement is found for the xylene isomers at T=365 K.

alkylbenzene gas–liquid chromatography molecular simulation vapor–liquid equilibria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    B. L. Karger, L. R. Snyder, and C. Eon, Anal. Chem. 50:2126 (1978).Google Scholar
  2. 2.
    W. R. Melander and C. Horváth, in High-Performance Liquid Chromatography: Advances and Perspectives, Vol. 2, C. Horváth, ed. (Academic Press, London, 1980), p. 113.Google Scholar
  3. 3.
    D. E. Martire and R. E. Boehm, J. Phys. Chem. 87:1045 (1983).Google Scholar
  4. 4.
    R. Kaliszan, Quantitative Structure-Chromatographic Retention Relationships, Chemical Analysis, Vol. 93 (Wiley-Interscience, New York, 1987).Google Scholar
  5. 5.
    C. H. Lochmüller, C. Reese, A. J. Aschman, and S. J. Breiner, J. Chromatogr. A 656:3 (1993).Google Scholar
  6. 6.
    M. G. Martin, J. I. Siepmann, and M. R. Schure, J. Phys. Chem. B 103:11191 (1999).Google Scholar
  7. 7.
    D. A. Tourres, J. Chromatogr. 30:357 (1967).Google Scholar
  8. 8.
    L. Rohrschneider, J. Chromatogr. 22:6 (1966).Google Scholar
  9. 9.
    W. O. McReynolds, J. Chromatogr. Sci. 8:685 (1970).Google Scholar
  10. 10.
    M. G. Martin and J. I. Siepmann, J. Phys. Chem. B 102:2569 (1988).Google Scholar
  11. 11.
    M. G. Martin and J. I. Siepmann, J. Phys. Chem. B 103:4508 (1999).Google Scholar
  12. 12.
    B. Chen and J. I. Siepmann, J. Phys. Chem. B 103:5370 (1999).Google Scholar
  13. 13.
    B. Chen, J. Xing, and J. I. Siepmann, J. Phys. Chem. B 104:2391 (2000).Google Scholar
  14. 14.
    C. D. Wick, M. G. Martin, and J. I. Siepmann, J. Phys. Chem. B 104:8008 (2000).Google Scholar
  15. 15.
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987).Google Scholar
  16. 16.
    W. D. Cornell, P. Cieplak, C. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc. 117:5179 (1995).Google Scholar
  17. 17.
    W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118:11225 (1996).Google Scholar
  18. 18.
    A. Ben-Naim, Statistical Thermodynamics for Chemists and Biochemists (Plenum Press, New York, 1992).Google Scholar
  19. 19.
    J. C. Giddings, Unified Separation Science (Wiley, New York, 1991).Google Scholar
  20. 20.
    M. R. Schure, in Advances in Chromatography, Vol. 39, P. R. Brown and E. Grushka, eds. (Marcel Dekker, New York, 1998), p. 139.Google Scholar
  21. 21.
    D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic Press, New York, 1996).Google Scholar
  22. 22.
    J. P. Valleau, J. Chem. Phys. 99:4718 (1993).Google Scholar
  23. 23.
    S. K. Kumar, I. Szleifer, and A. Z. Panagiotopoulos, Phys. Rev. Lett. 66:2935 (1991).Google Scholar
  24. 24.
    D. A. Kofke, J. Chem. Phys. 98:4149 (1993).Google Scholar
  25. 25.
    N. B. Wilding, Phys. Rev. E 52:602 (1995).Google Scholar
  26. 26.
    F. A. Escobedo and J. J. de Pablo, J. Chem. Phys. 106:2911 (1997).Google Scholar
  27. 27.
    T. Spyriouni, I. G. Economou, and D. N. Theodorou, Phys. Rev. Lett. 80:4466 (1998).Google Scholar
  28. 28.
    A. Z. Panagiotopoulos, Mol. Phys. 61:813 (1987).Google Scholar
  29. 29.
    A. Z. Panagiotopoulos, N. Quirke, M. Stapleton, and D. J. Tildesley, Mol. Phys. 63:527 (1988).Google Scholar
  30. 30.
    B. Smit, P. de Smedt, and D. Frenkel, Mol. Phys. 68:931 (1989).Google Scholar
  31. 31.
    J. I. Siepmann, Mol. Phys. 70:1145 (1990).Google Scholar
  32. 32.
    J. I. Siepmann and D. Frenkel, Mol. Phys. 75:59 (1992).Google Scholar
  33. 33.
    D. Frenkel, G. C. A. M. Mooij, and B. Smit, J. Phys. Cond. Matt. 4:3053 (1992).Google Scholar
  34. 34.
    J. J. de Pablo, M. Laso, and U. W. Suter, J. Chem. Phys. 96:2395 (1992).Google Scholar
  35. 35.
    G. C. A. M. Mooij, D. Frenkel, and B. Smit, J. Phys. Cond. Matt. 4:L255 (1992).Google Scholar
  36. 36.
    M. Laso, J. J. Pablo, and U. W. Suter, J. Chem. Phys. 97:2817 (1992).Google Scholar
  37. 37.
    M. G. Martin and J. I. Siepmann, J. Am. Chem. Soc. 119:8921 (1997).Google Scholar
  38. 38.
    M. G. Martin and J. I. Siepmann, Theor. Chem. Acc. 99:347 (1998).Google Scholar
  39. 39.
    B. Chen and J. I. Siepmann, J. Am. Chem. Soc. 122:6464 (2000).Google Scholar
  40. 40.
    B. D. Smith and R. Srivastava, Thermodynamic Data for Pure Compounds: Part A. Hydrocarbons and Ketones (Elsevier, Amsterdam, 1986).Google Scholar
  41. 41.
    M. V. Budahegyi, E. R. Lombosi, T. S. Lombosi, S. Y. Mészáros, Sz. Nyiredy, G. Tarján, I. Timár, and J. M. Takács, J. Chromatogr. 271:213 (1983).Google Scholar
  42. 42.
    E. Kovats, Helv. Chim. Acta 41:1915 (1958).Google Scholar
  43. 43.
    E. Kovats, in Advances in Chromatography, Vol. 1 (Marcel Dekker, New York, 1965), p. 229.Google Scholar
  44. 44.
    J. Krupcik, O. Liska, and L. Sojak, J. Chromatogr. 51:119 (1970).Google Scholar
  45. 45.
    L. E. Cook and F. M. Raushel, J. Chromatogr. 65:556 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • C. D. Wick
    • 1
  • M. G. Martin
    • 1
  • J. I. Siepmann
    • 1
  • M. R. Schure
    • 2
  1. 1.Departments of Chemistry and of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisU.S.A
  2. 2.Theoretical Separation Science LaboratoryRohm and Haas CompanySpring HouseU.S.A

Personalised recommendations