Annals of Global Analysis and Geometry

, Volume 18, Issue 3–4, pp 385–404 | Cite as

Examples of Minimal Unit Vector Fields

  • J. C. González-Dávila
  • L. Vanhecke
Article

Abstract

We provide a series of examples of Riemannian manifoldsequipped with a minimal unit vector field.

geodesic normal strongly normal and minimal unit vector fields 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berndt, J., Tricerri, F. and Vanhecke, L.: Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces, Lecture Notes in Math. 1598, Springer-Verlag, Berlin, 1995.Google Scholar
  2. 2.
    Blair, D. E.: Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer-Verlag, Berlin, 1976.Google Scholar
  3. 3.
    Blair, D. E., Koufogiorgos, T. and Papantoniou, B. J.: Contact metric manifolds satisfying a nullity conditions, Israel J. Math. 91(1995), 189–214.Google Scholar
  4. 4.
    Boeckx, E.: A class of locally ϕ-symmetric contact metric spaces, Arch. Math. 72(1999), 466–472.Google Scholar
  5. 5.
    Boeckx, E.: A full classification of contact metric. (k, μ)-spaces, Illinois J. Math. 40(1999), 459–474.Google Scholar
  6. 6.
    Boeckx, E., Bueken, P. and Vanhecke, L.: Flow-symmetric Riemannian manifolds, Beiträge Algebra Geom. 7(18) (1998), 601–613.Google Scholar
  7. 7.
    Cho, J. T. and Vanhecke, L.: Hopf hypersurfaces of D'Atri and C-type in a complex space form, Rend. Mat., to appear.Google Scholar
  8. 8.
    Gil-Medrano, O.: On the volume functional in the manifold of unit vector fields, in Cordero, L. A. and García-Río, E. (eds), Proceedings of a Workshop on Recent Topics in Differential Geometry, Santiago de Compostela, 1997, Public. Depto. Geometría y Topología, Universidad Santiago de Compostela 89(1998), 155–163.Google Scholar
  9. 9.
    Gil-Medrano, O. and Llinares-Fuster, E.: Minimal unit vector fields, Preprint, 1998.Google Scholar
  10. 10.
    Gluck, H. and Ziller, W.: On the volume of a unit vector field on the three-sphere, Comment. Math. Helv. 61(1986), 177–192.Google Scholar
  11. 11.
    González-Dávila, J. C., González-Dávila, M. C. and Vanhecke, L.: Reflections and isometric flows, Kyungpook Math. J. 35(1995), 113–144.Google Scholar
  12. 12.
    González-Dávila, J. C., González-Dávila, M. C. and Vanhecke, L.: Classification of Killingtransversally symmetric spaces, Tsukuba J. Math. 20(1996), 321–347.Google Scholar
  13. 13.
    Haraguchi, Y.: Sur une généralisation des structures de contact, Thèse, Université du Haute Alsace, Mulhouse, 1981.Google Scholar
  14. 14.
    Janssens, D. and Vanhecke, L.: Almost contact structures and curvature tensors, Kodai Math. J. 4(1981), 1–27.Google Scholar
  15. 15.
    Johnson, D. L.: Volumes of flows, Proc. Amer. Math. Soc. 104(1988), 923–931.Google Scholar
  16. 16.
    Johnson, D. L. and Smith, P.: Regularity of volume-minimizing graphs, Indiana Univ. Math. J. 44(1995), 45–85.Google Scholar
  17. 17.
    Kaplan, A.: Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258(1980), 147–153.Google Scholar
  18. 18.
    Kenmotsu, K.: A class of almost contact Riemannian manifolds, Tôhoku Math. J. 24(1972), 93–103.Google Scholar
  19. 19.
    Llinares-Fuster, E.: Campos de vectores unitarios minimales, Memoria de Investigación de Tercer Ciclo, Depto. de Geometría y Topología, Universidad de Valencia, 1998.Google Scholar
  20. 20.
    Milnor, J.: Curvature of left invariant metrics on Lie groups, Adv. Math. 21(1976), 293–329.Google Scholar
  21. 21.
    O'Neill, B.: Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.Google Scholar
  22. 22.
    Pedersen, S. L.: Volumes of vector fields on spheres, Trans. Amer. Math. Soc. 336(1993), 69–78.Google Scholar
  23. 23.
    Reznikov, A. G.: Lower bounds on volumes of vector fields, Arch. Math. 58(1992), 509–513.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • J. C. González-Dávila
    • 1
  • L. Vanhecke
    • 2
  1. 1.Departamento de Matemática Fundamental, Sección de Geometría y TopologíaUniversidad de La LagunaLa LagunaSpain
  2. 2.Department of MathematicsKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations