Skip to main content
Log in

The Effect of Asphalt Precipitation on Flow Behavior and Production of a Fractured Carbonate Oil Reservoir During Gas Injection

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The first field data, collected over an 11 year period, are presented which indicate the possible effect of asphalt precipitation on the permeability and injectivity index of a fractured carbonate oil reservoir. The asphalt aggregates were formed during enhanced oil recovery by injection of a rich gas into the reservoir. The data indicate that, while at the initial stages of the operations the permeability and injectivity index decrease, at later times they appear to oscillate with the process time, with apparent oscillations' periods that depend on the heterogeneity of the reservoir. Two classes of plausible mechanisms that give rise to such oscillatory behavior are discussed. One relies on the changes in the structure of the reservoir's fractures, while the other one is based on asphalt precipitation in the reservoir. Computer simulations of flow and precipitation of asphalt aggregates in a pore network model of the reservoir are carried out. The results appear to support our proposition that asphalt formation and precipitation in the reservoir are the main mechanism for the observed behavior of the injectivity index. We also develop a stochastic continuum model that accurately predicts the time-dependence of the reservoir's permeability and injectivity index during the gas injection process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennet, C. O. and Myers, J. E.: 1974, Momentum, Heat, and Mass Transfer, 2nd edn, McGraw-Hill, New York.

    Google Scholar 

  • Burke, N. E., Hobbs, R. E. and Kashou, S.F.: 1990, Measurement and modeling of asphaltene precipitation, J. Pet. Tech. 42, 1440.

    Google Scholar 

  • Boduszynski, M. M.: 1987, Composition of heavy petroleums. 1. Molecular weight, hydrogen deficiency, and heteroatom concentration as a function of atmospheric equivalent boiling point up to 1400 °F, Energy & Fuels 1, 2.

    Google Scholar 

  • Carnahan, N. F.: 1989, Paraffin deposition in petroleum production, J. Pet. Tech. 41, 1024.

    Google Scholar 

  • Carnahan, N. F., Quintero, L., Pfund, D. M., Fulton, J. L., Smith, R. D., Capel, M. and Leontaritis, K.: 1993, A small angle X-ray scattering study of the effect of pressure on the aggregation of asphaltene fractions in petroleum fluids under near-critical solvent conditions, Langmuir 9, 2035.

    Google Scholar 

  • Chang, C. and Fogler, H. S.: 1993, SPE Paper 25185.

  • Craft, B. C., Hawkins, M. F. and Terry, R. E.: 1990, Applied Petroleum Reservoir Engineering, 2nd edn, Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Dabir, B., Nematy, M., Mehrabi, A. R., Rassamdana, H. and Sahimi, M.: 1996, Asphalt flocculation and deposition: III. The molecular weight distribution, Fuel 75, 1633.

    Google Scholar 

  • David, A.: 1973, Asphaltene flocculation during solvent simulation of heavy oils, AIChE Symp. Series, 69, 56.

    Google Scholar 

  • Dickie, J. P., Haller, M. N., and Yen, T. F.: 1969, Electron microscopic investigations on the nature of petroleum asphaltics, J. Colloid Interface Sci. 29, 475.

    Google Scholar 

  • Espinat, D. and Ravey, J. C.: 1993, SPE Paper 25187.

  • Fan, L. T., Nassar, R., Hwang, S. H. and Chou, S. T.: 1985, Analysis of deep bed filtration data: Modeling as a birth-death process, AIChE J. 31, 1781.

    Google Scholar 

  • Goldman, A. J., Cox, R. G. and Brenner, H.: 1967, Slow viscous motion of a sphere parallel to a plane wall: I. Motion through a quiescient fluid, Chem. Eng. Sci. 22, 637.

    Google Scholar 

  • Hirschberg, A., deJong, L. N. G., Schipper, B. A. and Meijer, J. G.: 1984, Influence of temperature and pressure on asphaltene flocculation, Soc. Pet. Eng. J. 24, 283.

    Google Scholar 

  • Imdakm, A. O. and Sahimi, M.: 1991, Computer simulation of particle transport processes in flow through porous media, Chem. Eng. Sci. 46, 1977.

    Google Scholar 

  • Katz, D. L. and Beu, K. E.: 1945, Nature of asphaltic substances, Ind. Eng. Chem. 37, 195.

    Google Scholar 

  • Kawanaka, S., Park, S. J. and Mansoori, G. A.: 1991, Organic deposition from reservoir fluids: a thermodynamic predictive technique, SPE Reser. Eng. 6, 185.

    Google Scholar 

  • Koots, J. A. and Speight, J. G.: 1975, Relation of petroleum resins to asphaltenes, Fuels 54, 179.

    Google Scholar 

  • Lapidus, L. and Pinder, G. F.: 1982, Numerical Solution of Partial Differential Equations in Science and Engineering, Wiley, New York.

    Google Scholar 

  • Leontaritis, K. J.: 1989, SPE Paper 18892.

  • Lichaa, P. M. and Herrera, L.: 1975, Electrical and other effects related to the formation and prevention of asphaltenes deposition, SPE Paper 5304.

  • Lihoreau, C., Briant, J. and Tindy, R.: 1967, Influence de la pression sur la flocculation des asphaltenes, Revue Inst. Francais Pét. 22, 797.

    Google Scholar 

  • Liu, Y. C., Sheu, E. Y., Chen, S. H. and Storm, D. A.: 1995, Fractal structure of asphaltene in toluene, Fuel 74, 1352.

    Google Scholar 

  • Litwinisyzn, J.: 1966, Colmatage-scouring in the light of stochastic birth-death, Bulletin De ´LAcadémie Polanaise Des Sciences, Serie des Sciences Techniques 14, 561.

    Google Scholar 

  • Long, X. N. and Coombe, D. A.: 1997, Modeling asphaltene precipitation during primary depletion, Soc. Pet. Eng. J. 2, 170.

    Google Scholar 

  • MacMillan, D. J., Tackett, J. E., Jr., Jessee, M. A. and Monger-McClure, T. G.: 1995, A unified approach to asphaltene precipitation: Laboratory measurement and modeling, J. Pet. Techn. 47, 788.

    Google Scholar 

  • Monger, T. G.: 1984, The impact of oil aromaticity on carbon dioxide flooding, SPE/DOE Paper 12708.

  • Monger, T. G. and Fu, J. C.: 1987, The nature of CO2-induced organic deposition, SPE Paper 16713.

  • Monger, T. G. and Khakoo, A.: 1981, The phase behavior of CO2-appalacian oil systems, SPE Paper 10269.

  • Mozaffarian, M., Dabir, B., Sohrabi, M., Rassamdana, H. and Sahimi, M.: 1997, Asphalt flocculation and deposition: IV. Dynamic evolution of the heavy organic compounds, Fuel 76, 1479.

    Google Scholar 

  • Preckshot, G. W., DeLisle, N. G., Cottel, C. E. and Katz, D. L.: 1943, Asphaltic substances in crude oils, Trans. AIME 151, 188.

    Google Scholar 

  • Rassamdana, H., Dabir, B., Nematy, M., Farhani, M. and Sahimi, M.: 1996, Asphalt flocculation and deposition: I. The onset of precipitation, AIChE J. 41, 10.

    Google Scholar 

  • Rassamdana, H., Farhani, M., Mozaffarian, M., Dabir, B. and Sahimi, M.: 1999, Asphalt flocculation and deposition: V. Phase behavior in miscible and immiscible injections, Energy & Fuels 13, 176.

    Google Scholar 

  • Rassamdana, H. and Sahimi, M.: 1996, Asphalt flocculation and eposition: II. Formation and growth of fractal aggregates, AIChE J. 42, 3318.

    Google Scholar 

  • Sahimi, M.: 1995, Flow and Transport in Porous Media and Fractured Rock, VCH, Weinheim, Germany.

    Google Scholar 

  • Sahimi, M. and Imdakm, A. O.: 1991, Hydrodynamics of particulate motion in porous media, Phys. Rev. Lett. 66, 1169.

    Google Scholar 

  • Sahimi, M., Rassamdana, H. and Dabir, B.: 1997, Asphalt formation and precipitation: Experimental studies and theoretical modelling, Soc. Pet. Eng. J. 2, 157.

    Google Scholar 

  • Sheu, E. Y., Liang, K. S., Sinha, S. K. and Overfield, R. E.: 1992, Polydispersity analysis of asphaltene solutions in toluene, J. Colloid Interface Sci. 153, 399.

    Google Scholar 

  • Speight, J. G.: 1991, The Chemistry and Technology of Petroleum, Marcel Dekker, New York.

    Google Scholar 

  • Standing, M. B.: 1977, Volumetric behavior of oil field hydrocarbon systems, SPE Paper 45154.

  • Storm, D. A., Sheu, E. Y. and DeTar, M. M.: 1993, Macrostructure of asphaltenes in vacuum residue by small-angle X-ray scattering, Fuel 72, 977.

    Google Scholar 

  • Tuttle, R.M.: 1983, High-pour-point and asphaltic crude oils and condensates, J. Pet. Tech. 35, 1192.

    Google Scholar 

  • Wu, J., Prausnitz, J. M. and Firoozabadi, A.: 1998, Molecular-based thermodynamics of asphalteneoil equilibria, AIChE J. 44, 1188.

    Google Scholar 

  • Yarborough, L.: 1979, Application of a generalized equation of state to petroleum reservoir fluids, in: K. C. Chao and R. L. Robinson (eds), Equations of State in Engineering and Research, American Chemical Society, Washington.

    Google Scholar 

  • Yen, T. F.: 1974, Structure of petroleum asphaltene and its significance, Energy Sources 1, 447.

    Google Scholar 

  • Yen, T. F. and Chilingarian, G. V. (eds): 1994, Asphaltenes and Asphalts, Elsevier, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahimi, M., Mehrabi, A.R., Mirzaee, N. et al. The Effect of Asphalt Precipitation on Flow Behavior and Production of a Fractured Carbonate Oil Reservoir During Gas Injection. Transport in Porous Media 41, 325–347 (2000). https://doi.org/10.1023/A:1006759524127

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006759524127

Navigation