Transport in Porous Media

, Volume 39, Issue 2, pp 187–225 | Cite as

Macroscale Thermodynamics and the Chemical Potential for Swelling Porous Media

  • Lynn Schreyer Bennethum
  • Márcio A. Murad
  • John H. Cushman


The thermodynamical relations for a two-phase, N-constituent, swelling porous medium are derived using a hybridization of averaging and the mixture-theoretic approach of Bowen. Examples of such media include 2-1 lattice clays and lyophilic polymers. A novel, scalar definition for the macroscale chemical potential for porous media is introduced, and it is shown how the properties of this chemical potential can be derived by slightly expanding the usual Coleman and Noll approach for exploiting the entropy inequality to obtain near-equilibrium results. The relationship between this novel scalar chemical potential and the tensorial chemical potential of Bowen is discussed. The tensorial chemical potential may be discontinuous between the solid and fluid phases at equilibrium; a result in clear contrast to Gibbsian theories. It is shown that the macroscopic scalar chemical potential is completely analogous with the Gibbsian chemical potential. The relation between the two potentials is illustrated in three examples.

macroscale chemical potential mixture theory porous media swelling porous media 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achanta, S. and Cushman J. H.: Non-equilibrium swelling and capalliary pressure relations for colloidal system, J. Colloid Interface Sci. 168 (1994), 266–268.Google Scholar
  2. 2.
    Achanta, S., Cushman, J. H. and Okos, M. R.: On multicomponent, multiphase thermomechanics with interfaces, Int. J. Engng Sci. 32(11) (1994), 1717–1738.Google Scholar
  3. 3.
    Achanta, S., Okos, M. R., Cushman, J. H. and Kessler, D. P.: Moisture transport in shrinking gels during saturated drying, AIChE 43(8) (1997), 2112.Google Scholar
  4. 4.
    Adams, E. E. and Brown, R. L.: A mixture theory for evaluating heat and mass transport processes in nonhomogeneous snow, Contin. Mech. Thermodyn. 2 (1990), 31–63.Google Scholar
  5. 5.
    Aifantis, E. C.: On the problem of diffusion in solids, Acta Mech. 37 (1980), 265–296.Google Scholar
  6. 6.
    Atkin, R. J. and Craine, R. E.: Continuum theories of mixtures: basic theory and historical development, Quart. J. Mech. Appl. Math. 29 (1976), 209–231.Google Scholar
  7. 7.
    Balzhiser, R. E., Samuels, M. R. and Eliassen, J. D.: Chemical Engineering Thermodynamics, Prentice Hall, New Jersey, 1972.Google Scholar
  8. 8.
    Bartholomeusz, B. J.: The chemical potential at the surface of a non-hydrostatically stressed, defect-free solid, Philosophical Magazine A 71 (1995),489–495.Google Scholar
  9. 9.
    Bear, J.: Dynamics of Fluid in Porous Media, Elsevier, Amsterdam, 1972.Google Scholar
  10. 10.
    Beckermann, C. and Viskanta R.: Mathematical modeling of transport phenomena during alloy solidification, Appl. Mech. Rev. 46(1) (1993), 1–27.Google Scholar
  11. 11.
    Bennethum, L. S.: Multiscale, hybrid mixture theory for swelling systems with interfaces, PhD Thesis, Purdue University, West Lafayette, Indiana, 1994.Google Scholar
  12. 12.
    Bennethum, L. S. and Cushman, J. H.: Multiscale hybrid mixture theory for swelling systems – I: Balance laws. Int. J. Engng Sci. 34(2) (1996a), 125–145.Google Scholar
  13. 13.
    Bennethum L. S. and Cushman, J. H.: Multiscale hybrid mixture theory for swelling systems – II. Constitutive Theory, Int. J. Engng Sci. 34(2) (1996b), 147–169.Google Scholar
  14. 14.
    Benethum, L. S., Murad, M. A. and Cushman, J. H.: Clarifying mixture theory and the macroscale chemical potential for porous media, Int. J. Engng Sci. 34(14) (1996), 1611–1621.Google Scholar
  15. 15.
    Biot, M.: General Theory of three-dimensional consolidation, J. Appl. Phys. 12 (1994), 155–164.Google Scholar
  16. 16.
    Biot, M.: Theory of propagation of elastic waves in a fluid-saturated porous solid, J. Acoust. Soc. Amer. 28(2) (1956), 168–178.Google Scholar
  17. 17.
    Biot M.: Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys. 33(4) (1962), 1482–1498.Google Scholar
  18. 18.
    Bouré, J. A.: Two-phase. flow models: the closure issue, In: G. F. Hewitt, J. M. Delhaye and N. Zuber (eds), Multiphase Science and Technology, Vol. 3, Marcel Dekker, New York, 1987, pp. 3–30.Google Scholar
  19. 19.
    Bowen, R. M.: Theory of Mixtures, In: A. C. Eringen (ed.), Continuum Physics, Vol. 3, Academic Press, New York, 1976, pp. 2–127.Google Scholar
  20. 20.
    Bowen, R. M.: Incompressible porous media models by use of the theory of mixtures, Int. J. Engng Sci. 18 (1980), 1129–1148.Google Scholar
  21. 21.
    Bowen, R. M.: Compressible porous media models by use of the theory of mixtures, Int. J. Engng Sci. 20 (1982), 697–735.Google Scholar
  22. 22.
    Bowen, R. M. and Wiese, J. C.: Diffusion in mixtures of elastic bodies, Int. J. Engng Sci. 7, (1969), 689–735.Google Scholar
  23. 23.
    Callen, H.: Thermodynamics and an Introduction to Thermostatics, Wiley, New York, 1985.Google Scholar
  24. 24.
    Castellan, G.: Physical Chemistry, Addison-Wesley, Menlo Park, California, 1983.Google Scholar
  25. 25.
    Coleman, B. D. and Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity, Archive Rational Mech. Anal. 13 (1963), 167–178.Google Scholar
  26. 26.
    Cushman, J.: Molecular-scale lubrication, Nature 347 (1990), 227–228.Google Scholar
  27. 27.
    Cushman, J. H.: On unifying the concepts of scale, instrumentation and stochastics in the development of multiple phase transport theroy, Water Resour. Res. 20 (1984), 1668–1676.Google Scholar
  28. 28.
    de Groot, S. R. and Mazure, P.: Nonequilibrium Thermodynamics. McGraw-Hill, New York, 1962.Google Scholar
  29. 29.
    Deemer, A. R. and Slattery, J. C.: Balance equations and structural models for phase interfaces, Int. J. Multiphase Flow 4 (1978), 171–192.Google Scholar
  30. 30.
    Derjaguin, B. V. and Churaev, N.: On the question of determining the concept of disjoining pressure and its role in the equilibrium and flow of thin films, J. Colloid Interface Sci. 66(3) (1978), 389–398.Google Scholar
  31. 31.
    Derjaguin, B. V. and Churaey, N.: The current state of the theory of long-range surface forces, Colloids and Surfaces 41 (1989), 223–237.Google Scholar
  32. 32.
    Derjaguin, B. V., Churaev, N. and Muller, V. M.: Surface Forces. Consultants Bureau, New York, 1987.Google Scholar
  33. 33.
    Eringen, A. C.: Mechanics of Continua. John Wiley and Sons, New York, 1967.Google Scholar
  34. 34.
    Fremond, M. and Nicolas, P.: Macroscopic thermodynamics of porous media, Continuum Mechanics and Thermodynamics 2 (1990), 119–139.Google Scholar
  35. 35.
    Gee, M. L., Mcguiggan, P. M., Israelachvili, J. and Homola, A. M.: Liquid to solid-like transitions of molecularly thin films under shear, J. Chem. Phys. 93(3) (1990), 1895–1906.Google Scholar
  36. 36.
    Goodman, M. A. and Cowin, S. C.: A Continuum Theory for Granular Materials, Archive Rational Mech. Anal. 44 (1972), 249–266.Google Scholar
  37. 37.
    Gray, W. G. and Hassanizadeh, S.M.: Unsaturated flow theory including inerfacial phenomena. Water Resour. Res. 27 (1991), 1855–1863.Google Scholar
  38. 38.
    Grim, R. E.: (1968), Clay Mineralogy, McGraw-Hill, New York.Google Scholar
  39. 39.
    Hassanizadeh, S. M.: 1986, Derivation of basic equations of mass transport in porous media, Part 2. Generalized Darcy's and Fick's Laws, Adv. Water Resour. 9, 207–223.Google Scholar
  40. 40.
    Hassanizadeh, S. M. and Gray, W. G.: General conservation equations for multiphase systems: 1. Averaging procedure, Adv. Water Resour. 2 (1979a), 131–144.Google Scholar
  41. 41.
    Hassanizadeh, S. M. and Gray, W. G.: General conservation equations for multiphase systems: 2. Mass, momenta, energy, and entropy equations, Adv. Water Resour 2 (1979a), 191–208.Google Scholar
  42. 42.
    Hassanizadeh, S. M. and Gray, W. G.: General conservation equations for multiphase systems: 3: constitutive theory for porous media, Adv. Water Resour. 3 (1980), 25–40.Google Scholar
  43. 43.
    Hassanizadeh, S. M. and Gray, W. G.: Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries, Adv. Water Resour. 13 (1990), 169–186.Google Scholar
  44. 44.
    Hassanizadeh, S. M. and Gray, W. G.: Thermodynamics basics of capillary pressure in porous media, Water Resour. Res. 29(10) (1993a), 3389–3405.Google Scholar
  45. 45.
    Hassanizadeh, S. M. and Gray, W. G.: Toward an improved description of the physics of two phase flow, Adv. Water Resour. 16 (1993b), 53–67.Google Scholar
  46. 46.
    Hueckel, T.: On effective stress concepts and deformation in clays subjected to environmental loads, Canad. Geotech. J. 29 (1992), 1120–1125.Google Scholar
  47. 47.
    Israelachvili, J.: Intermolecular and Surface Force, Academic Press, New York, 1991.Google Scholar
  48. 48.
    Israelachvili, J., Mcguiggan, P.M. and Homola, A.M.: Dynamic properties of molecularly thin liquid films, Science 240 (1988), 189–191.Google Scholar
  49. 49.
    Kralchevsky, P. A. and Ivanoy, I. B.: Micromechanical description of curved interfaces, thin films, and membranes – II: Film surface tensions, disjoining pressure and interfacial stress balances, J. Colloid Interface Sci. 137(1) (1990), 234–252.Google Scholar
  50. 50.
    Kremer, G. M., Dai, L. and Marques J. W.: Thermodynamics of binary mixtures of molecular and noble gases, Contin. Mech. Thermodyn. 4 (1992), 37–57.Google Scholar
  51. 51.
    Lambe, T. W.: A mechanistic picture of shear strength in clay, In: Research Conference on Shear Strength of Cohesive Soils, New York, 1960, pp. 503–532.Google Scholar
  52. 52.
    Liu, I. S.: Method of Lagrange multipliers for exploitation of the entropy principle, Archive Rational Mech. Anal. 46 (1972), 131–148.Google Scholar
  53. 53.
    Liu, I. S. and Muller, I.: Extended thermodynamics of classical and degenerate gases, Archive Rational Mech. Anal. 83 (1983), 285–332.Google Scholar
  54. 54.
    Low, P. E. Viscosity of interlayer water in montmorillonites, Soil Sci. Soc. Amer. J. 40 (1976), 500–505.Google Scholar
  55. 55.
    Low, P. F.: Nature and properties of water in montmorillonite-water system, Soil Sci. Soc. America J. 43 (1979), 651–658.Google Scholar
  56. 56.
    Low, P. F.: The swelling of clay: II. Montmorillonite-water system, Soil Sci. Soc. America J. 44(4) (1980), 667–676.Google Scholar
  57. 57.
    Low, P. F.: Structural component of the swelling pressure of clays, Langmuir 3 (1987), 18–25.Google Scholar
  58. 58.
    Low, P. F.: The clay/water interface and its role in the environment, In: Progress in Colloid & Polymer Science, Vol. 95, Steinkopff Verlat, 1994, pp. 98–107.Google Scholar
  59. 59.
    Marle, C. M.: On macroscopic equations governing multiphase flow with diffusion and chemical reactions in porous media, Int. J. Engng Sci. 20 (1982), 643–662.Google Scholar
  60. 60.
    Marsily, G.: 1986, Quantitative Hydrogeology: Groundwater Hydrology for Engineers, Academic Press, London.Google Scholar
  61. 61.
    McQuarrie, D. A.: 1977, Statistical Mechanics, Harper and Row, New York.Google Scholar
  62. 62.
    Morgensten, N. M. and Balasubramonian B.: Effects of pore fluid on the swelling of clayshale, In: D. Snethen (ed.), Proc. Fourth Int. Conf. on Expansive Soils, New York, NY, 1980, pp. 190–205.Google Scholar
  63. 63.
    Müller, I. and Ruggeri, T.: 1993, Extended Thermodynamics, Springer-Verlag, New York.Google Scholar
  64. 64.
    Murad, M. A., Bennethum, L. S. and Cushman, J. H.: A multiscale theory of swelling porous media: Application to one-dimensional consolidation, Transport in Porous Media 19 (1995), 93–122.Google Scholar
  65. 65.
    Murad, M. A. and Cushman, J. H.: Multiscale flow and deformation in hydrophilic swelling porous media, Int. J. of Engng Sci. 34(3) (1996), 313–336.Google Scholar
  66. 66.
    Murad, M. A. and Cushman, J. H.: (1997), A multiscale theory of swelling porous media: II dual porosity models for consolidation of clays incorporating physico-chemical effects, Transport in Porous Media 28(1) (1997), 69–108.Google Scholar
  67. 67.
    Passman, S. L., Nunziato, J. W. and Walsh, E. K.: 1984, A theory of multiphase mixtures, In: Truesdell (ed.), Rational Thermodynamics, Springer-Verlag, New York.Google Scholar
  68. 68.
    Richards, J. I. and Youn, H. K.: 1990, Theory of Distributions: A Non-Technical Introduction, Cambridge Univ. Press, Cambridge.Google Scholar
  69. 69.
    Rusanov, A. I.: 3. Thermodynamics of solid bulk phase: Anisotropy of chemical potential, Surface Science Reports 23(6–8) (1996), 178–181.Google Scholar
  70. 70.
    Schoen, M., Diestler, D. J. and Cushman, J. H.: Fluids in micropores. I. structure of a simple classical fluid in a slit-pore, J. of Chem. Phys. 87(9) (1987), 5464–5476.Google Scholar
  71. 71.
    Schwartz, L.: 1950, Théorie des Distributions. Paris: Hermann et Cie.Google Scholar
  72. 72.
    Slattery, J. C.: Flow of viscoelastic fluids through porous media, AIChE 13 (1967), 1066–1071.Google Scholar
  73. 73.
    Sridharan, A. and Rao, G. V.: Mechanisms controlling volume change of saturated clays and the role of the effective stress concept, Geotechique 23(3) (1973), 359–382.Google Scholar
  74. 74.
    Terzaghi, K.: 1942, Theoretical Soil Mechanics, John Wiley and Sons, New York.Google Scholar
  75. 75.
    Thomas, N. L. and Windle A H.: A theory of case II diffusion, Polymer 23 (1982), 529–542.Google Scholar
  76. 76.
    Truesdell, C. and Noll, W.: 1965, The Non-Linear Field Theories of Mechnics. Handbuch del Physik III/3, Springer-Verlag.Google Scholar
  77. 77.
    Vardoulakis, I. and Aifantis, E. C.: On the role of microstructure in the behavior of soils: Effects of higher order gradients and internal intertia, Mechanics of Materials 18 (1994), 151–158.Google Scholar
  78. 78.
    Whitaker, S.: Diffusion and dispersion in porous media, AIChE 13 (1967), 420–438.Google Scholar
  79. 79.
    Whitaker, S.: Advances in theory of fluid motion in porous media, Ind. Engng Chem. 61(12) (1969), 14–28.Google Scholar
  80. 80.
    Zubarev, D. N.: 1974, Nonequilibrium Statistical Thermodynamics, Consultants Bureau, New York, pp. 321–322.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Lynn Schreyer Bennethum
    • 1
  • Márcio A. Murad
    • 1
  • John H. Cushman
    • 1
  1. 1.Department of MathematicsDenverU.S.A., e-mail

Personalised recommendations