Transport in Porous Media

, Volume 30, Issue 1, pp 25–43 | Cite as

An Analytical Solution to the One-Dimensional Solute Advection-Dispersion Equation in Multi-Layer Porous Media

  • Chongxuan Liu
  • William P. Ball
  • J. Hugh Ellis


An analytical solution to the one-dimensional solute advection-dispersion equation in multi-layer porous media is derived using a generalized integral transform method. The solution was derived under conditions of steady-state flow and arbitrary initial and inlet boundary conditions. The results obtained by this solution agree well with the results obtained by numerically inverting Laplace transform-generated solutions previously published in the literature. The analytical solution presented in this paper provides more flexibility with regard to the inlet conditions. The numerical evaluation of eigenvalues and matrix exponentials required in this solution technique can be accurately and efficiently computed using the sign-count method and eigenvalue evaluation methods commonly available. The illustrative calculations presented herein have shown how an analytical solution can provide insight into contaminant distribution and breakthrough in transport through well defined layered column systems. We also note that the method described here is readily adaptable to two and three-dimensional transport problems.

solute transport multi-layer porous media analytical solution integral transform 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Niami, A. N. S.: 1977, Analytical and numerical solutions for miscible two phase flow in porous media, PhD dissertation, University of Birmingham, Birmingham, U.K.Google Scholar
  2. Al-Niami, A. N. S. and Rushton, K. R.: 1979, Dispersion in stratified porous media, Water Resour. Res. 15, 1044-1048.Google Scholar
  3. Bear, J.: 1970, Dynamics of Fluid in Porous Media, Elsevier, New York.Google Scholar
  4. Brenner, H.: 1962, The diffusion model of longitudinal mixing in beds of finite length, numerical values, Chem. Eng. Sci 17, 229-243.Google Scholar
  5. Cotta, R. M.: 1993, Integral Transforms in Computational Heat and Fluid Flow, CRC Press, Inc, Florida.Google Scholar
  6. Dagan, G.: 1988, Time-dependent macrodispersion for solute transport in anisotropic heterogeneous aquifer, Water Resour. Res. 24, 1491-1500.Google Scholar
  7. Freeze, R. A. and Cherry, J. A.: 1979, Groundwater, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  8. Gelhar, L. W.: 1986, Stochastic subsurface hydrology — from theory to applications, Water Resour. Res. 22, 135S-145S.Google Scholar
  9. Jacobson, O. H., Leij, F. J. and van Genuchten, M. T.: 1992, Lysimeter study of anion transport during steady flow through layered coarse-textured soil profiles, Soil Sci. 154, 196-205.Google Scholar
  10. Leij, F. J., Dane, J. H. and van Genuchten, M. T.: 1991, Mathematical analysis of one-dimensional solute transport in a layered soil profile, Soil Sci. Soc. Am. J. 55, 944-953.Google Scholar
  11. Leij, F. J. and van Genuchten, M. T.: 1995, Approximate analytical solutions for solute transport in two-layer porous media, Transport in Porous Media 18, 65-85.Google Scholar
  12. Mikhailov, M. D., Ozisik, M. N. and Vulchanov, N. L.: 1983, Diffusion in composite layers with automatic solution of the eigenvalue problem, Int. J. Heat Transfer 26, 1131-1141.Google Scholar
  13. Mikhailov, M. D. and Ozisik, M. N.: 1984, Unified Analysis and Solution of Heat and Mass Diffusion, Wiley, New York.Google Scholar
  14. Mikhailov, M. D. and Vulchanov, N. L.: 1983, A computational procedure for Sturm-Liouville problem, J. Comput. Phys. 50, 323-336.Google Scholar
  15. Moler, C. and van Loan, C.: 1978, Nineteen dubious ways to compute the exponential of a matrix, SIAM Rev. 20, 801-837.Google Scholar
  16. Nakayama, S., Takagi, I., Nakai, K. and Higashi, K.: 1984, Migration of radionuclide through two-layered geologic media, J. Nuclear Sci. Technol. 21, 139-147.Google Scholar
  17. Ozisik, M. N.: 1993, Heat Conduction, Johs Wiley & Son, Inc.Google Scholar
  18. Parker, J. C. and van Genuchten, M. T.: 1984, Flux-averaged and volume-averaged concentrations in continuum approaches to solute transport, Water Resour. Res. 20, 866-872.Google Scholar
  19. Rowe, R. K., Caers, C. J. and Chan, C.: 1993, Evaluation of a compacted till liner test pad constructed over a granular subliner contingency layer, Canad. Geotech. J. 30, 667-689.Google Scholar
  20. Rugh, W. J.: 1996, Linear system theory, Prentice-Hall, Upper Saddle River, New Jersey.Google Scholar
  21. Selim, H. M., Davison, J. M. and Rao, P. S. C.: 1977, Transport of reactive solutes through multilayered soils, Soil Sci. Soc. Am. J. 41, 3-10.Google Scholar
  22. Thoma, G. J., Reible, D. D., Valsaraj, K. T. and Thibodeaux, L. J.: 1993, Efficiency of capping contaminated sediments in situ. 2. Mathematics of diffusion-adsorption in the capping layer, Environ. Sci. Technol. 27, 2412-2419.Google Scholar
  23. van Genuchten, M. T. and Alves, W. J.: 1982, Analytical solutions of the one-dimensional convective-dispersive solute transport equation, USDA Tech. Bull. 1661.Google Scholar
  24. van Genuchten, M. T. and Parker, J. C.: 1984, Boundary conditions for displacement experiments through short laboratory soil, Soil Sci. Soc. Am. J. 48, 703-708.Google Scholar
  25. Wang, X. Q., Thibodeaux, L. J., Valsaraj, K. T. and Reible, D. D.: 1991, Efficiency of capping contaminated bed sediments in situ. 1. Laboratory-scale experiments on diffusion-adsorption in the capping layer, Environ. Sci. Technol. 25, 1578-1584.Google Scholar
  26. Wittrick, W. H. and William, F. W.: 1974a, Buckling and vibrations of anisotropic or isotropic plate assemblies under combined loading, Int. J. Mech. Sci. 16, 209-239.Google Scholar
  27. Wittrick, W. H. and William, F. W.: 1974b, A general algorithm for computing natural frequencies of elastic structure, Quart. J. Mech. Appl. Math. 24, 263-284.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Chongxuan Liu
    • 1
  • William P. Ball
    • 1
  • J. Hugh Ellis
    • 1
  1. 1.Department of Geography and Environmental EngineeringThe Johns Hopkins UniversityBaltimoreU.S.A.

Personalised recommendations