Advertisement

Transport in Porous Media

, Volume 29, Issue 1, pp 1–13 | Cite as

Diffusion of n-Hexane in Porous Media of Activated Carbon

  • J. Barkauskas
  • A. Kareiva
  • K. Jansson
Article
  • 65 Downloads

Abstract

Kinetics of n-hexane oxidation on the surface of activated carbon was investigated at different temperatures. The diffusion step of this reaction was determined and estimated. The spatial structure of activated carbon was reconstructed using electron micrographs and measurements. The relation between this structure and diffusitivity of n-hexane was determined in the form of an intrication coefficient. Two currents of diffusion into the volume of activated carbon were ascertained. Relations between the intrication coefficient and the topology of the intricated space are suggested.

activated carbon diffusitivity n-hexane topology of space capillaries pores 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barkauskas, J. and Kareiva, A.: 1995, Oxidation products forming in the reaction of n-hexane with an air oxygen on the surface of activated carbon, Zh. Prikl. Khimii(S-Peterburg)68(3), 441-445.Google Scholar
  2. 2.
    Barkauskas, J. and Kareiva, A.: 1994, Investigation of n-hexane oxidation on the surface of activated charcoal, React. Kinet. Catal. Lett. 53(1), 7-12.Google Scholar
  3. 3.
    Bhatia, S. K.: 1997, Transport of gases containing condensables in porous solids, in: A. S. Mujumdar and R. A. Mashelkar (eds), Advances in Transport Proceses IX,Elsvier, Amsterdam, pp 420-483.Google Scholar
  4. 4.
    Encyclopedia of Chemical Technology, Vol. 4: 1976; Wiley, New York, pp. 457-480.Google Scholar
  5. 5.
    Guiochon, G. and Guillemin, C. L.: 1988, Quantitative Gas Chromatography,Elsevier, Amsterdam, pp. 120-121.Google Scholar
  6. 6.
    Gutmann, I. and Polansky, O. E.: 1986, Mathematical Concepts of Organic Chemistry,Springer-Verlag, Berlin, pp. 32-40.Google Scholar
  7. 7.
    Handbuch der industriellen Messtechnik,1984, P. Profos, (ed.), Vulkan-Verlag, Essen, pp. 160-192.Google Scholar
  8. 8.
    Jones, G. F.: 1989, A note on the inverse problem of radial diffusion in semi-infinite porous medium, Int. J. Heat Mass Transfer 32(10), 1997-1999.Google Scholar
  9. 9.
    Lastoskie, C. et al.: 1993, Pore size heterogeneity and the carbon slit pore: a density functional theory model, Langmuir 9(10), 2693-2702.Google Scholar
  10. 10.
    Lymberopoulos, D. P. and Patayakes, A. C.: 1992, Derivation of topological, geometrical and correlational properties of porous media from pore-chart analysis of serial section data, J. Colloid Interface Sci. 150(1), 61-80.Google Scholar
  11. 11.
    Kateman, G. and Pijpers, F. W.: 1981, Quality Control in Analytical Chemistry,Wiley, New York, pp. 251-269.Google Scholar
  12. 12.
    Stoeckli, F.; Huguenin, D. and Greppi, A.: 1993, Primary and secondary filling of micropores in active carbons, J. Chem. Soc. Faraday Trans. 89(12), 2055-2058.Google Scholar
  13. 13.
    Schwetlick, K. et al.: 1989, Chemische Kinetik ,VEB Deutscher Verlag für Gründstoffindustrie, Leipzig, pp. 20-35.Google Scholar
  14. 14.
    Vretos, N. A., Imakoma, H. and Ozaki, M.: 1989, Transport properties of porous media from a planar microgeometry of a three-dimensional Voronoi network, Chem. Eng. Process 26(3), 237-246.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • J. Barkauskas
    • 1
  • A. Kareiva
    • 1
  • K. Jansson
    • 2
  1. 1.Department of General and Inorganic ChemistryVilniusUniversityVilniusLithuania
  2. 2.Department of Inorganic Chemistry, Arrhenius LaboratoryStockholm UniversityStockholmSweden

Personalised recommendations