Skip to main content
Log in

Thermal Conductivity of a Single Fracture

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The macroscopic conductivity of fractures is determined for Gaussian and self-affine fractures by solving the three-dimensional Laplace equation. Results are discussed and compared with various analytical or two-dimensional approximations. They are shown to be in good agreement with some existing experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abelin, H., Birgersson, L., Gidlund, J. and Neretnieks, I.: A large-scale flow and tracer experiment in granite. 1. Experimental design and flow distribution, Water Resour. Res. 27 (1991), 3107–3117.

    Google Scholar 

  • Adler, P. M., Porous Media: Geometry and Transports, Butterworth/Heinemann, Stoneham, MA, 1992.

    Google Scholar 

  • Adler, P. M., Jacquin, C. C. and Quiblier, J.: Flow in simulated porous media, Int. J. Multiphase Flow 16 (1990), 691–712.

    Google Scholar 

  • Batzle, M. L. and Simmons, G.: Microcrack closure in rock under stress: Fluid and electrical transport (abstr), EOS Trans. AGU 64(18) (1983), 317.

    Google Scholar 

  • Bernabé, Y.: Comparison of the effective pressure law for permeability and resistivity formation factor in Chelmsford granite, Pageoph. 127 (1988), 607–625.

    Google Scholar 

  • Bodvarsson, G. S., Benson, S. M., Sigurdsson, O., Stefansson, V. and Eliasson, E. T.: The Krafta geothermal field, Iceland. 1. Analysis of well test data, Water Resour. Res. 20 (1984), 1515–1530.

    Google Scholar 

  • Brace, W. F.: Some new measurements of linear compressibility of rocks, J. Geophys. Res. 70 (1965), 391–398.

    Google Scholar 

  • Brown S. R.: Transport of fluid and electric current through a single fracture, J. Geophys. Res. 94(B7) (1989), 9429–9438.

    Google Scholar 

  • Brown, S. R. and Scholz, C. H.: Broad bandwidth study of the topography of natural rock surfaces, J. Geophys. Res. 90(B14) (1985), 12,575–12,582.

    Google Scholar 

  • David, C.: Geometry of flow paths for fluid transport in rocks, J. Geophys. Res. 98(B7) (1993), 12,267–12,278.

    Google Scholar 

  • Gelhar, L. W. and Axness, C. L.: Three-dimensional stochastic analysis of macrodispersion in aquifers, Water Resour. Res. 19 (1983), 161–180.

    Google Scholar 

  • Hansen, A., Hinrichsen, E. L. and Roux, S.: Roughness of crack interfaces, Phys. Rev. Lett. 66 (1991), 2476–2479.

    Google Scholar 

  • Happel, J. and Brenner, H.: Low Reynolds Number Hydrodynamics, Martinus Nijhoff Dordrecht, 1986.

  • Henriette, A., Jacquin, C. G. and Adler, P. M.: The effective permeability of heterogeneous porous media, Phys. Chem. Hydrodyn. 11 (1989), 63–80.

    Google Scholar 

  • Indelman, P. and Abramovich, B.: A higher-order approximation to effective conductivity of anisotropic random structure, Water Resour. Res. 30 (1994), 1857–1864.

    Google Scholar 

  • Mlåøy, K. J., Hansen, A., Hinrichsen, E. L. and Roux, S.: Experimental measurements of the roughness of brittle cracks, Phys. Rev. Lett. 68 (1993), 213–215.

    Google Scholar 

  • Mourzenko, V. V., Thovert, J.-F. and Adler, P. M.: Permeability of a single fracture; validity of the Reynolds equation, J. Phys. II 5 (1995), 465–482.

    Google Scholar 

  • Mourzenko, V. V., Thovert, J.-F. and Adler, P. M.: Geometry of simulated fractures, Phys. Rev. E 53 (1996), 5606–5626.

    Google Scholar 

  • Pruess K.: Heat transfer in fractured geothermal reservoirs with boiling, Water Resour. Res. 19 (1983), 201–208.

    Google Scholar 

  • Pruess, K., Wang, J. S. Y. and Tsang, Y. W.: On thermohydrologic conditions near high-level nuclear wastes emplaced in partially saturated fractured tuff. 1. Simulation studies with explicit consideration of fracture effects, Water Resour. Res. 26 (1990), 1235–1248.

    Google Scholar 

  • Schärli U. and Rybach, L.: On the thermal conductivity of low-porosity crystalline rocks, Tectonophysics 103 (1984), 307–313.

    Google Scholar 

  • Shvidler, M. I.: Stochastic Hydrodynamics of Porous Media (in Russian), Nedra, Moscow, 1985.

    Google Scholar 

  • Stauffer, D. and Aharony, A.: Introduction to Percolation Theory, 2nd edn, Taylor and Francis, Bristol, 1994.

    Google Scholar 

  • Stesky, R. M.: Electrical conductivity of brine-saturated rock, Geophysics 51 (1986), 1585–1593.

    Google Scholar 

  • Thovert, J.-F., Wary, F. and Adler, P. M.: Thermal conductivity of random media and regular fractals, J. Appl. Phys. 68 (1990), 3872–3883.

    Google Scholar 

  • Torquato, S.: Thermal conductivity of disordered heterogeneous media from the microstructure, Rev. Chem. Eng. 4 (1987), 151–204.

    Google Scholar 

  • Walsh, J. B. and Brace, W. F.: The effect of pressure on porosity and the transport properties of rock, J. Geophys. Res. 89 (1984), 9425–9431.

    Google Scholar 

  • Wollman, D. A., Dubson, M. A. and Zhu, Q.: Annealed percolation: Determination of exponents in a correlated-percolation problem, Phys. Rev. B 48 (1993), 3713–3720.

    Google Scholar 

  • Zimmerman, R. W.: Thermal conductivity of fluid-saturated rock, J. Petrol Sci. Eng. 3 (1989), 219- 227.

    Google Scholar 

  • Zimmerman, W. R., Chen, D.-W. and Cook, N. G. W.: The effect of contact area on the permeability of fractures, J. Hydrology 139 (1992), 79–96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

VOLIK, S., MOURZENKO, V.V., THOVERT, JF. et al. Thermal Conductivity of a Single Fracture. Transport in Porous Media 27, 305–326 (1997). https://doi.org/10.1023/A:1006585510976

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006585510976

Navigation