Transport in Porous Media

, Volume 26, Issue 3, pp 339–371 | Cite as

The Differential System Method for the Identification of Transmissivity and Storativity

  • Rogelio Vázquez González
  • Mauro Giudici
  • Giansilvio Ponzini
  • Guido Parravicini


The differential system (DS) method for the identification of transmissivity and storativity is applied to a confined isotropic aquifer in transient conditions. The data that are required for the identification are the piezometric heads and the source terms, together with the value of transmissivity at a single point only, which is the only parameter value needed a priori. In particular, no a priori knowledge of storativity is needed and, moreover, the identification of transmissivity does not depend upon storativity. The DS method yields the internode transmissivities necessary for the conservative finite differences models in a natural way, because it identifies transmissivities along the internodal segments, so that a well-known formula can be applied that bypasses the difficulty of finding an equivalent cell transmissivity and an averaging scheme. In addition, the DS method takes into account several different flows all over the aquifer, so that the identified parameters are to a certain degree ‘global’ and‘flow independent’. Moreover, the method allows for a piecemeal identification of the parameters, thus keeping away from the regions where wells are pumping so that a two-dimensional model can be used throughout. We test the applicability of the DS method with noisy data by means of numerical synthetic examples and compare the identified internode transmissivities with the reference values. We use the identified parameters to forecast the behaviour of the aquifer under different exploitation and boundary conditions and we compare the forecast piezometric heads, their gradients and the associated fluxes with those computed with the reference parameters.

groundwater flow heterogeneous media inverse problems direct methods model parameters transmissivity analytical solutions numerical computations. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bear, J.: 1979, Hydraulics of Groundwater, McGraw-Hill, New York.Google Scholar
  2. Carrera, J.: 1988, State of art of the inverse problem applied to the flow and solute transport equations, in: E. Custodio et al. (eds), Groundwater Flow and Quality Modeling, Reidel, Dordrecht, pp. 549–583.Google Scholar
  3. Carrera, J., and Neuman, S. P.: 1986, Estimation of aquifer parameters under transient and steady state conditions: 3. application to synthetic and field data, Water Resour. Res. 22, 228–242.Google Scholar
  4. Cherry, J. A., Gillham, R. W., Anderson, E. G., and Johnson, P. E.: 1983, Migration of contaminants in groundwater at a landfill: A case study, 2. Groundwater monitoring devices, J. Hydrology 63, 31–50.Google Scholar
  5. Forsythe, G. E., Malcolm, M. A., and Moler, C. B.: 1977, Computer Methods for Mathematical Computations, Prentice-Hall, Englewood Cliffs.Google Scholar
  6. Freeze, R. A.: 1975, Astochastic-conceptual analysis of one-dimensional groundwater flowin nonuniform homogeneous media, Water Resour. Res. 11, 725–741.Google Scholar
  7. Ginn, T. R. and Cushman, J. H.: 1990, Inverse methods for subsurface flow: a critical review of stochastic techniques, Stochastic Hydrol. Hydraul. 4, 1–26.Google Scholar
  8. Ginn, T. R., Cushman, J. H., and Houch, M. H.: 1990, A continuous-time inverse operator for groundwater and contaminant transport modeling: deterministic case, Water Resour. Res. 26, 241–252.Google Scholar
  9. Ginn, T. R. and Cushman, J. H.: 1992, A continuous-time inverse operator for groundwater and contaminant transport modeling: model identifiability, Water Resour. Res. 28, 539–549.Google Scholar
  10. Giudici, M.: 1994, Identifiability of physical parameters for transport phenomena in geophysics, Technical Report, Università degli Studi di Milano, Milan.Google Scholar
  11. Giudici, M., Morossi, G., Parravicini, G. and Ponzini, G.: 1995, A new method for the identification of distributed transmissivities, Water Resour. Res. 31, 1969–1988.Google Scholar
  12. Gómez Hernández, J. J.: 1991, A stochastic approach to the simulation of block conductivity fields conditioned upon data measured at a smaller scale, PhD thesis, Stanford University, Stanford.Google Scholar
  13. Gómez Hernández, J. J. and Journel, A. G.: 1994, Stochastic characterization of grid-block permeabilities, SPE Form. Eval. 9, 93–100.Google Scholar
  14. Irmay, S.: 1980, Piezometric determination of inhomogeneous hydraulic conductivity, Water Resour. Res. 16, 691–694.Google Scholar
  15. McElwee, C. D., Bohling, G. C., and Butler, J. J. Jr.: 1995, Sensitivity analysis of slug tests. Part 1. The slugged well, J. Hydrology 164, 53–67.Google Scholar
  16. Nelson, R. W.: 1960, In-place measurement of permeability in heterogeneous media: 1. Theory of a proposed method, J. Geophys. Res. 65, 1753–1758.Google Scholar
  17. Nelson, R.W.: 1961, In-place measurement of permeability in heterogeneous media: 2. Experimental and computational considerations, J. Geophys. Res. 66, 2469–2478.Google Scholar
  18. Parravicini, G., Giudici, M., Morossi, G. and Ponzini, G.: 1995, Minimal a priori assignment in a direct method for determining phenomenological coefficients uniquely, Inverse Probl. 11, 611–629.Google Scholar
  19. Ponzini, G. and Crosta, G.: 1988, The comparison model method: a new arithmetic approach to the discrete inverse problem of groundwater hydrology. 1. One dimensional flow, Transport in Porous Media 3, 415–436.Google Scholar
  20. Ponzini, G., Crosta, G. and Giudici, M.: 1989, Identification of thermal conductivities by temperature gradient profiles: one dimensional steady flow, Geophysics 54, 643–653.Google Scholar
  21. Ponzini, G. and Lozej, A.: 1982, Identification of aquifer transmissivities: the comparison model method, Water Resour. Res. 18, 597–622.Google Scholar
  22. Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.: 1992, Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd edn, Cambridge University Press, Cambridge.Google Scholar
  23. Richter, G. R.: 1981a, An inverse problem for the steady state diffusion equation, SIAM J. Math. Anal. 41, 210–221.Google Scholar
  24. Richter, G. R.: 1981b, Numerical identification of a spatially varying diffusion coefficient, Math. Comput. 36, 375–386.Google Scholar
  25. Samarskij A. and Andreev, V.: 1978, Méthodes aux diff´erences pour ´equations elliptiques, Mir, Moscow.Google Scholar
  26. Stoer, J., and Bulirsch, R.: 1992, Introduction to Numerical Analysis, Springer-Verlag, New York, Berlin.Google Scholar
  27. Sudicky, E. A., Cherry, J. A., and Frind, E. O.: 1983, Migration of contaminants in groundwater at a landfill: A case study, 4. A natural gradient dispersion test, J. Hydrology 63, 81–108.Google Scholar
  28. Yeh, W. W-G.: 1986, Review of parameter identification procedures in groundwater hydrology: the inverse problem, Water Resour. Res. 22, 95–108.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Rogelio Vázquez González
    • 1
  • Mauro Giudici
    • 2
  • Giansilvio Ponzini
    • 2
  • Guido Parravicini
    • 3
    • 4
  1. 1.Centro de Investigación Cientifica y de Edución Superior de EnsenadaBaja CaliforniaMexico.
  2. 2.Dipartimento di Scienze della TerraUniversità degli Studi di MilanoMilanItaly
  3. 3.Dipartimento di FisicaUniversità degli Studi di MilanoMilanItaly
  4. 4.Instituto Nazionale di Fisica Nucleare, Sezione di MilanoItaly

Personalised recommendations