Advertisement

Transport in Porous Media

, Volume 26, Issue 1, pp 51–73 | Cite as

Multiscale Structures to Describe Porous Media Part I: Theoretical Background and Invasion by Fluids

  • Ke Xu
  • Jean-françois Daian
  • Daniel Quenard
Article

Abstract

A porous medium with a broad pore-size distribution is described on the basis of the Multiscale Percolation System concept. The representative structure is the superposition of several constitutive elementary networks, of which mesh sizes are proportional to the diameter of the class of pores considered. To account for the contribution of each class to the connection of the medium, a recurrent building process, involving rescaling and superposition, is defined. This process leads to an equivalent monoscale network, involving elements representative of the various classes. Mercury intrusion at increasing pressure into a finite-size sample of this equivalent network is modelled. The inverse problem is solved, leading to the identification of the representative multiscale structure of a given material from the experimental intrusion curve.

percolation theory, renormalization renormalization multiscale networks mercury intrusion porosimetry. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, P. M.: 1992, Porous Media. Geometry and Transports, Butterworth-Heineman, London.Google Scholar
  2. Bentz, D. P. and Martys, N.: 1995, Hydraulic radius and transport in reconstructed three-dimensional porous media, Transport in Porous Media 17(3), 201–220.Google Scholar
  3. Berkowitz, B. and Balberg, I.: 1993, Percolation theory and its application to groundwater hydrology, Water Resour. Res. 29(4), 775–794.Google Scholar
  4. Bernasconi, J.: 1978, Real space renormalization of bond-disordered conductances lattices, Phys. Rev. B. 18(3), 2185–2191.Google Scholar
  5. Charlaix, E., Guyon, E. and Roux, S.: 1987, Permeability of a random array of fractures of widely varying apertures, Transport in Porous Media 2, 31–43.Google Scholar
  6. Daian, J.-F., Xu, K. and Quenard, D.: 1994, Invasion and transport processes in multiscale model structure for porous media, in: J. Rouquerol, F. Rodriguez-Reinoso, K. S. W. Sing and K. K. Unger, (eds), Characterization of Porous Solids III, Elsevier, Amsterdam.Google Scholar
  7. Diaz, C. E., Chatzis, I. and Dullien, F. A. L.: 1987, Simulation of capillary pressure curves using bond correlated site percolation on a simple cubic network, Transport in Porous Media 2(3), 215–240.Google Scholar
  8. Dullien, F. A. L.: 1979, Porous Media: Fluid Transport and Pore Structure, Academic Press, New York.Google Scholar
  9. Fernandes, C. P., Magnani, F. S., Philippi, P. C. and Daïan, J.-F.: 1996, Multiscale geometrical reconstruction of porous sructures, Phys. Rev. E 54(1), in press.Google Scholar
  10. Fuentes, C., Vauclin, M., Parlange, J.-Y. and Haverkamp, R.: 1996, A note on the soil-water conductivity of a fractal soil, Transport in Porous Media 23(1), 31–36.Google Scholar
  11. Garboczi, E. J. and Bentz, D. P.: 1992, Computer simulation of the diffusivity of cement-based materials, J. Materials Sci. 27, 2083–2092.Google Scholar
  12. Haverkamp, R. and Parlange, J.-Y.: 1986, Predicting the water-retention curve from particle-size distribution: 1. Sandy soil without organic matter, Soil Sci. 142, 325–339.Google Scholar
  13. Hinrichsen, E. L., Aharony, A., Feder, J., Hansen, A., Tortstein, J. and Hardy, H. H.: 1993, A fast algorithm for estimating large-scale permeabilities of correlated anisotropic media, Transport in Porous Media 12(1), 55–72.Google Scholar
  14. Hollewand M. P. and Gladden L. F.: 1992, Bond percolation and conduction in random and regular networks: topological effects at lowcoordination number, J. Phys:Condens.Matter 4, 5757–5762.Google Scholar
  15. Ioannidis, M. A. and Chatzis, I.: 1993, A mixed-percolation model of capillary hysteresis and entrapment in mercury porosimetry, J. Colloïd Interface Sci. 161, 278–291.Google Scholar
  16. King, P. R.: 1989, The use of renormalization for calculating effective permeability, Transport in Porous Media 4(1), 37–58.Google Scholar
  17. King, P. R., Muggerride, A. H. and Price, W. G.: 1993, Renormalization calculation of immiscible flow, Transport in Porous Media 12(3), 237–260.Google Scholar
  18. Kirkpatrick, S.: 1973, Percolation and conduction, Rev. Mod. Phys. 45, 574–588.Google Scholar
  19. Neimark, A. V.: 1989, Multiscale percolation systems, Sov. Phys. JETP 69(4), 786–791.Google Scholar
  20. Perrier, E., Mullon, C., Rieu, M., de Marsilly, G.: 1995, Computer construction of fractal soil structures: simulation of their hydraulic and shrinkage properties, Water Resour. Res. 31(12), 2927–2944.Google Scholar
  21. Quenard, D. and Sallée, H.: 1992, Water vapour adsorption and transfer in cement-based materials, Materials and Structures 25, 515–522.Google Scholar
  22. Renault, P.: 1991, The effect of spatially correlated blocking-up of some bonds or nodes of a network on the percolation threshold, Transport in Porous Media 6(4), 451–468.Google Scholar
  23. Parlar, M. and Yortsos, C.: 1988, Percolation Theory of vapor adsorption-desorption processes in porous materials, J. Colloïd Interface Sci. 124(1), 162–176.Google Scholar
  24. Rieu, M. and Sposito, G.: 1991, Fractal fragmentation, soil porosity, and soil water properties: 1. Theory, Soil Sci. Soc. Am. J. 55, 1231–1238.Google Scholar
  25. Rieu, M. and Sposito, G.: 1991, Fractal fragmentation, soil porosity, and soil water properties: 2. Applications, Soil Sci. Soc. Am. J. 55, 1239–1243.Google Scholar
  26. Sahimi, M.: 1994, Applicatons of Percolation Theory, Taylor and Francis, London.Google Scholar
  27. Saliba, J. and Daian, J.-F.: 1991, Détermination d'un réseau aléatoire de pores pour modéliser la sorption et la migration d'humidité dans un mortier de ciment, Int. J. Heat Mass Transfer 34(8), 2081–2096Google Scholar
  28. Sallès, J., Thovert, J. F., and Adler, P.M.: 1993, Reconstructed porous media and their application to fluid flow and solute transport, J. Contaminant Hydrol. 13, 3–22.Google Scholar
  29. Schwartz, L. M., Auzerais, F., Dunsmuir, J., Martys, N., Bentz, D. P., and Torquato, S.: 1993, Transport and diffusion in three-dimensional composite media, Physica A: Proceedings of the 3rd international meeting on electrical transport and optical properties of inhomogeneous media.Google Scholar
  30. Stauffer, D.: 1985, Introduction to Percolation Theory, Taylor and Francis, London.Google Scholar
  31. Stauffer, D. and Aharony, A.: 1994, Introduction to Percolation Theory (rev. 2nd edn), Taylor and Francis, London.Google Scholar
  32. Stauffer, D., Adler, J. and Aharony, A.: 1994, Universality at the three-dimensional percolation threshold, J. Phys. A 27, L475–L480.Google Scholar
  33. Thompson, A. H., Katz, A. J. and Krohn, C. E.: 1987, The microgeometry and transport properties of sedimentary rocks, Adv. Phys. 36(5), 625–694.Google Scholar
  34. Tsakiroglou, C. and Payatakes, A.: 1990, A new simulator of mercury porosimetry for the characterization of porous materials, J. Colloïd Interface Sci. 137(2), 315–339.Google Scholar
  35. Tsakiroglou, C. and Payatakes, A.: 1991, Effects of pore size correlations on mercury porosimetry curves, J. Colloïd Interface Sci. 146(2), 479–496.Google Scholar
  36. Wilkinson, D. and Willemsen, J. F.: 1983, Invasion percolation: a new form of percolation theory, J. Phys. A: Math. Gen. 16, 3365–3376.Google Scholar
  37. Wilkinson, D. and Barsony, M.: 1984, Monte Carlo study of invasion percolation clusters in two and three dimensions, J. Phys. A: Math. Gen. 17, L129–L135.Google Scholar
  38. Wilson, K. G.: 1971, Renormalization and critical phenomena, Phys. Rev. B. 4(9), 174–184.Google Scholar
  39. Xu, K.: 1995, Structures multiéchelles modèles pour la description des matériaux poreux et l'estimation de leurs propriétés de transport, Thèse de Doctorat, Université Joseph Fourier, Grenoble, France.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Ke Xu
    • 1
  • Jean-françois Daian
    • 2
    • 3
  • Daniel Quenard
    • 4
  1. 1.Centre d'Etude de la Neige (Météo-France)Saint Martin d'HèresFrance
  2. 2.Laboratoire d'Etude des Transferts en Hydrologie et Environment, Université Joseph Fourier, Institut National Polytechnique de Grenoble, Centre National de la Recherche Scientifique (UMR 5564)France
  3. 3.Jean-Fran¸ois Daian, LTHE, BP53Grenoble Cedex 09France
  4. 4.Saint Martin d'HèresFrance

Personalised recommendations