Advertisement

Transport in Porous Media

, Volume 29, Issue 1, pp 61–83 | Cite as

Electrical Conductivity and Percolation Aspects of Statistically Homogeneous Porous Media

  • M. A. Ioannidis
  • M. J. Kwiecien
  • I. Chatzis
Article

Abstract

A method of 3-D stochastic reconstruction of porous media based on statistical information extracted from 2-D sections is evaluated with reference to the steady transport of electric current. Model microstructures conforming to measured and simulated pore space autocorrelation functions are generated and the formation factor is systematically determined by random walk simulation as a function of porosity and correlation length. Computed formation factors are found to depend on correlation length only for small values of this parameter. This finding is explained by considering the general percolation behavior of a statistically homogeneous system. For porosities lower than about 0.2, the dependence of formation factor on porosity shows marked deviations from Archie's law. This behavior results from the relatively high pore space percolation threshold (∼0.09) of the simulated media and suggests a limitation to the applicability of the method to low porosity media. It is additionally demonstrated that the distribution of secondary porosity at a larger scale can be simulated using stochastic methods. Computations of the formation factor are performed for model media with a matrix-vuggy structure as a function of the amount and spatial distribution of vuggy porosity and matrix conductivity. These results are shown to be consistent with limited available experimental data for carbonate rocks.

microstructure reconstruction conductivity percolation carbonates correlation conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, P. M., Jacquin, C. G. and Quiblier, J. A.: 1990, Flow in simulated porous media, Int. J. Multiphase Flow 16, 691-712.Google Scholar
  2. Adler, P. M., Jacquin, C. G. and Thovert, J. F.: 1992, The formation factor of reconstructed porous media, Water Resour. Res. 28, 1571-1576.Google Scholar
  3. Adler, P. M.: 1992, Porous Media: Geometry and Transports, Butterworth-Heinemann, Stoneham.Google Scholar
  4. Archie, G. E.: 1942, Electrical resistivity log as an aid in determining some reservoir characteristics, Trans. AIME 146, 54-67.Google Scholar
  5. Bentz, D. P. and Martys, N. S.: 1994, Hydraulic radius and transport in reconstructed model threedimensional porous media, Transport in Porous Media 17, 221-238.Google Scholar
  6. Berryman, J. G.: 1985, Measurement of spatial correlation functions using image processing techniques, J. Appl. Phys. 57, 2374- 2384.Google Scholar
  7. Borai, A. M.: 1987, A new correlation for the cementation factor in low-porosity carbonates, SPE Formation Evaluation 2, 495-499.Google Scholar
  8. Bryant, S., Cade, C. and Mellor, D.: 1993, Permeability prediction from geologic models, AAPG Bull. 77, 1338-1350.Google Scholar
  9. Carmichael, R. S.: 1982, Handbook of Physical Properies of Rocks, Vol. 1, Chemical Rubber Company, Boca Raton, FL.Google Scholar
  10. Crossley, P. A., Schwartz, L. M. and Banavar, J. R.: 1991, Image-based models of porous media: application to Vycor glass and carbonate rocks, Appl. Phys. Lett. 59, 3553-3555.Google Scholar
  11. Debye, P., Anderson, H. R. and Brumberger, H.: 1957, Scattering by an inhomogeneous solid. II. the correlation function and its application, J. Appl. Phys. 28, 679-683.Google Scholar
  12. Doyen, P. M.: 1988, Permeability, conductivity and pore geometry of sandstone, J. Geophys. Res. 93, 7729-7740.Google Scholar
  13. Dullien, F. A. L.: 1992, Porous Media: Fluid Transport and Pore Structure, 2nd edn, Academic Press, San Diego, CA.Google Scholar
  14. Focke, J. W. and Munn, D.: 1987, Cementation exponents in middle eastern carbonate reservoirs, SPE Formation Evaluation 2, 155-167.Google Scholar
  15. de Gennes, P. G.: 1976, La percolation: un concept unificateur, La Recherche 7, 919-927.Google Scholar
  16. Gutjahr, A. L.: 1989, Fast Fourier transform for random field generation, Project Report, New Mexico Institute of Mining and Technology, Contact No. 4-R58-2690R.Google Scholar
  17. Hearst, J. R. and Nelson, P. H.: 1985, Well Logging for Physical Properties, McGraw-Hill, New York.Google Scholar
  18. Hilfer, R.: 1991, Geometric and dielectric characterization of porous media, Phys. Rev. B 44, 60-75.Google Scholar
  19. Hoshen, J. and Kopelman, R.: 1976, Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm, Phys. Rev. B. 14, 3438-3445.Google Scholar
  20. Ioannidis, M. A. and Chatzis, I.: 1993, Network modelling of pore structure and transport properties of porous media, Chem. Eng. Sci. 48, 951-972.Google Scholar
  21. Ioannidis, M. A., Chatzis, I. and Sudicky, E. A.: 1993, The effect of spatial correlations on the accessibility characteristics of three-dimensional cubic networks as related to drainage displacements in porous media, Water Resour. Res. 29, 1777-1785.Google Scholar
  22. Ioannidis, M. A., Kwiecien, M. J. and Chatzis, I.: 1995, Computer generation and application of 3-D model porous media: from pore-level geostatistics to the estimation of formation factor, SPE Petroleum Computer Conf., paper 30201, 11-14 June Houston, TX.Google Scholar
  23. Ioannidis, M. A., Kwiecien, M. J. and Chatzis, I.: 1996, Statistical analysis of the porous microstructure as a method for estimating reservoir permeability, J. Petrol. Sci. Eng. 16, 251-261.Google Scholar
  24. Joshi, M.: 1974, A class of stochastic models for porous media, PhD Dissertation, University of Kansas.Google Scholar
  25. Journel, A. B. and Huijbregts, C. J.: 1978, Mining Geostatistics, Academic Press, San Diego, CA.Google Scholar
  26. Kim, I. C. and Torquatto, S.: 1990, Determination of the effective conductivity of heterogeneous media by Brownian motion simulation, J. Appl. Phys. 68, 3892-3903.Google Scholar
  27. Kong, T. Y.: 1989, Digital topology: introduction and survey, Comput. Vision Graphics Image Process. 48, 357-374.Google Scholar
  28. Kwiecien, M. J.: 1994, On the comprehensive characterization of porous media via computer reconstruction and stochastic modeling, PhD Dissertation, University of Waterloo.Google Scholar
  29. Lucia, F. J.: 1983, Petrophysical parameters estimated from visual descriptions of carbonate rocks, J. Petrol. Technol. 35, 629-637.Google Scholar
  30. Martys, N. and Garboczi, E. J.: 1992, Length scales relating the fluid permeability and electrical conductivity in random two-dimensional model porous media, Phys. Rev. B 46, 6080.Google Scholar
  31. Mendelson, K. S. and Cohen, M. H.: 1982, The effect of grain anisotropy on the electrical properties of sedimentary rocks, Geophysics 47, 257-263.Google Scholar
  32. Quiblier, J. A.: 1984, A new three-dimensional modeling technique for studying porous media, J. Colloid Interface Sci. 98, 84-102.Google Scholar
  33. Renault, P.: 1991, The effect of spatially correlated blocking-up of some bonds or nodes of a network on the percolation threshold, Transport in Porous Media 6, 451-468.Google Scholar
  34. Roberts, J. N. and Schwartz, L. M.: 1985, Grain consolidation and electrical conductivity in porous media, Phys. Rev. B 31, 5990-5997.Google Scholar
  35. Sahimi, M. and Stauffer, D.: 1991, Efficient simulation of flow and transport in porous media, Chem. Eng. Sci. 46, 2225-2233.Google Scholar
  36. Schwartz, L.M. and Kimminau, S.: 1987, Analysis of electrical conduction in the grain consolidation model, Geophysics 52, 1402-1411.Google Scholar
  37. Sen, P. N., Scala, C. and Cohen, M. H.: 1981, A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads, Geophysics 46, 781-795.Google Scholar
  38. Spanne, P., Thovert, J. F., Jacquin, C. J., Lindquist, W. B., Jones, K. W. and Adler, P. M.: 1994, Synchrotron computed microtomography of porous media: topology and transports, Phys. Rev. Lett. 73, 2001-2004.Google Scholar
  39. Stauffer, D.: 1985, Introduction to Percolation Theory, Taylor and Francis, London.Google Scholar
  40. Thovert, J. F., Salles, J. M. and Adler, P. M.: 1993, Computerized characterization of the geometry of real porous media: their discretization, analysis and interpretation, J. Microscopy 170, 65-79.Google Scholar
  41. Wong, P., Koplik, J. and Tomanic, J. P.: 1984, Conductivity and permeability of rocks, Phys. Rev. B 30, 6606-6614.Google Scholar
  42. Yao, J., Frykman, P., Kalaydjian, F., Thovert, J. F. and Adler, P. M.: 1993, High-order moments of the phase function for real and reconstructed porous media: a comparison, J. Colloid Interface Sci. 156, 478-490.Google Scholar
  43. Ziman, J. M.: 1979, Models of Disorder, Cambridge University Press, New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • M. A. Ioannidis
    • 1
  • M. J. Kwiecien
    • 1
  • I. Chatzis
    • 1
  1. 1.Porous Media Research Institute, Department of ChemicalEngineering, University of WaterlooWaterlooCanada

Personalised recommendations