Advertisement

Transport in Porous Media

, Volume 26, Issue 1, pp 99–107 | Cite as

Generation of Granular Media

  • Laurent Tacher
  • Pierre Perrochet
  • Aurèle Parriaux
Article

Abstract

A discrete reduced distance method to generate 2-D and 3-D granular porous media is presented. The main property of the method is to produce heterogeneous and/or anisotropic packed beds of joined grains with arbitrary shapes and optimum fitting (i.e., minimum porosity). The iterative generation process starts with the coarsest grain and adjusts the size and location of the next ones depending on the updated available space. Hence, grain size distribution cannot be specified directly but is merely the consequence of user defined input parameters. The latter consists of a set of randomly distributed initial points, a few typical predefined grain shapes as well as the minimum and maximum grain diameters. The simulated granular media can readily be processed by an appropriate mesh generator to allow for subsequent numerical solutions of differential equations.

modelling microscopic scale granular media. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, P. M. and Thovert, J.-F.: 1993, Fractal porous media, Transport in Porous Media 13, 41–78.Google Scholar
  2. Adler, P. M. and Jacquin, C. G.: 1987, Fractal porous media I: Longitudinal Stokes flow in random carpets, Transport in Porous Media 2, 553–569.Google Scholar
  3. Adler, P.M.: 1988, Fractal porous media III: Transversal Stokes flow through random and Sierpinski carpets, Transport in Porous Media 3, 185–198.Google Scholar
  4. Allaire, G.: 1989, Homogenization of the Stokes flow in a connected porous medium, Asympt. Anal. 2, 203–222.Google Scholar
  5. Barrere, J., Gipouloux, O. and Whitaker, S.: 1992, On the closure problem for Darcy's law, Transport in Porous Media 7, 209–222.Google Scholar
  6. Békri, J., Thovert, J. F. and Adler, P. M., 1995, Dissolution of porous media, Chem. Engng. Sci. 50, 2765–2791.Google Scholar
  7. Blunt, M. and King, P.: 1990, Macroscopic parameters from simulations of pore scale flow, Phys. Rev. 42(8), 4780–4787.Google Scholar
  8. Borne, L.: 1992, Harmonic stokes flow through periodic porous media: a 3D boundary element method, J. Comput. Phys. 99, 214–232.Google Scholar
  9. Brenner, H.: 1980, Dispersion resulting from flow through spatially periodic porous media, Philos. Trans. R. Soc., London, Ser. A 297, 81–133.Google Scholar
  10. Chapman, A. M. and Higdon, J. J. L.: 1992, Oscillatory Stokes flow in periodic porous media, Phys. Fluids A, 4, 2099–2116.Google Scholar
  11. Dullien, F. A. L.: 1991, Characterisation of porous media - Pore level, Transport in Porous Media 6, 581–606.Google Scholar
  12. Eidsath, R., Carbonell, R. G., Withaker, S. and Hermann, L. R.: 1983, Dispersion in pulsed systems III: Comparison between theory and experiments for packed beds, Chem. Engng. Sci. 38, 1803–1816.Google Scholar
  13. German, R. M.: 1989, Particle Packing Characteristics, Metal Powder Industries Federation, New York, 433 pp.Google Scholar
  14. Jacquin, C. G. and Adler, P. M.: 1987, Fractal porous media II: Geometry of porous geological structures, Transport in Porous Media 2, 571–596.Google Scholar
  15. Jullien, R., Meakin, P. and Pavlovitch, A.: 1992, Three-dimensionalmodel for particle-size segregation by shaking, Phys. Rev. Lett. 69(4), 640–643.Google Scholar
  16. Palaniappan, D., 1992, Arbitrary Stokes flow past a porous sphere, Mech. Res. Comm. 20, 309–317.Google Scholar
  17. Prieur du Plessis, J. and Masliyah, J. H.: 1988, Mathematical modelling of flow through consolidated isotropic porous media, Transport in Porous Media 3, 145–161.Google Scholar
  18. Prieur du Plessis, J. and Masliyah, J. H.: 1991, Flow throught isotropic granular porous media, Transport in Porous Media 6, 207–221.Google Scholar
  19. Sallès, J., Thovert, J. F. and Adler, P. M.: 1993, Reconstructed porous media and their application to fluid flow and solute transport, J. Contam. Hydrol. 13, 3–22.Google Scholar
  20. Tacher, L. and Parriaux, A.: 1996, Automatic nodes generation in a N-dimensional space. Comm. Num. Meth. Engng. 12(4), 243–248.Google Scholar
  21. Thies-Weesie, D. M. E., Philipse, A. P. and Kluijtmans, S. G. J. M.: 1995, Preparation of sterically stabilized silica-hematite ellipsoids: Sedimentation, permeation, and packing properties of prolate colloids, J. Colloid Interface Sci. 174, 211–223.Google Scholar
  22. Withaker, S.: 1986, Flow in porous media I: A theoretical derivation of Darcy's law, Transport in Porous Media 1, 3–25.Google Scholar
  23. Weatherill, N. P.: 1992, The Delaunay triangulation in CFD, Comput. Math. Appl. 24(5/6), 129–150.Google Scholar
  24. Yen, K. Z. Y. and Chaki, T. K.: 1992, A dynamic simulation of particle rearrangement in powder packings with realistic interactions. J. Appl. Phys., 71- 7, 3164–3173.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Laurent Tacher
    • 1
  • Pierre Perrochet
    • 1
  • Aurèle Parriaux
    • 1
  1. 1.Laboratory of GeologySwiss Institute of Technology, GEOLEP-EPFLLausanneSwitzerland

Personalised recommendations