Advertisement

Transport in Porous Media

, Volume 28, Issue 1, pp 69–108 | Cite as

A Multiscale Theory of Swelling Porous Media: II. Dual Porosity Models for Consolidation of Clays Incorporating Physicochemical Effects

  • Márcio a. Murad
  • John H. Cushman
Article

Abstract

A three-scale theory of swelling clay soils is developed which incorporates physico-chemical effects and delayed adsorbed water flow during secondary consolidation. Following earlier work, at the microscale the clay platelets and adsorbed water (water between the platelets) are considered as distinct nonoverlaying continua. At the intermediate (meso) scale the clay platelets and the adsorbed water are homogenized in the spirit of hybrid mixture theory, so that, at the mesoscale they may be thought of as two overlaying continua, each having a well defined mass density. Within this framework the swelling pressure is defined thermodynamically and it is shown to govern the effect of physico-chemical forces in a modified Terzaghi's effective stress principle. A homogenization procedure is used to upscale the mesoscale mixture of clay particles and bulk water (water next to the swelling mesoscale particles) to the macroscale. The resultant model is of dual porosity type where the clay particles act as sources/sinks of water to the macroscale bulk phase flow. The dual porosity model can be reduced to a single porosity model with long term memory by using Green's functions. The resultant theory provides a rational basis for some viscoelastic models of secondary consolidation.

swelling clay soil mixture theory homogenization consolidation swelling pressure disjoining pressure dual porosity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achanta, S. and Cushman, J. H.: 1994, Non-equilibrium swelling and capillary pressure relations for colloidal systems, J. Collord Interface Sci. 168, 266–268.Google Scholar
  2. 2.
    Achanta, S. and Cushman, J. H. and Okos, M.R.: 1994, On multicomponent, multiphase thermomechanics with interfaces, Int. J. Engrg. Sci. 32(11): 1717–1738.Google Scholar
  3. 3.
    Arbogast, T.: 1992, A simplified dual-porosity model for two-phase flow, in: T. F. Russel, R. E. Ewing, C. A. Brebbia, W. G. Gray, and G. F. Pindar, (eds), Computational Methods in Water Resources, Computational Mechanics Publication, Southampton, U.K., pp. 419–426.Google Scholar
  4. 4.
    Arbogast, T.: 1993, Gravitational forces in dual-porosity systems, Transport in Porous Media, 13, 179–220.Google Scholar
  5. 5.
    Arbogast, T. and Douglas Jr., J. and Hornung, U.: 1991, Modeling of naturally fractured reservoirs by formal homogenization techniques, in: R. Dautray (ed.), Frontiers in Pure and Applied Mathematics, Elsevier, Amsterdam, pp. 1–19Google Scholar
  6. 6.
    Auriault, J. L.: 1990, Behavior of porous saturated deformable media, in F. Darve (ed.), Geomaterials: Constitutive Equations and Modelling, Elsevier, New York, pp. 311–328.Google Scholar
  7. 7.
    Auriault, J. L.: 1991, Heterogeneous media: Is an equivalent macroscopic description possible? Int. J. Eng. Sci. 29, 785–795.Google Scholar
  8. 8.
    Auriault, J. L. and Boutin, C.: 1992, Deformable porous mediawith double porosity. Quasi-Statics I: Coupling effects, Transport in Porous Media 7, 63–82.Google Scholar
  9. 9.
    arbour, S. L. and Fredlund, D. G.: 1989, Mechanisms of osmotic flow and volume changes in clay soils, Can. Geotech J. 26, 551–562.Google Scholar
  10. 10.
    Barden, L.: 1965, Consolidation of clay with nonlinear viscosity, Geotechnique 15, 345–361.Google Scholar
  11. 11.
    Bedford, A. and Drumheller, D. S.: 1983, Theories of immiscible and structured mixtures, Int. J. Eng. Sci. 21(8), 863–960.Google Scholar
  12. 12.
    Bennethum, L. S. and Cushman, J. H.: 1996, Multiscale hybrid mixture theory for swelling systems: Part II: Constitutive theory, Int. J. Eng. Sci. 34(2), 147–169.Google Scholar
  13. 13.
    Bennethum, L. S. and Cushman, J. H.: 1996, Multiscale hybrid mixture theory for swelling systems: Part I: Balance laws, Int. J. Eng. Sci. 34(2), 125–145.Google Scholar
  14. 14.
    Bennethum, L. S., Murad, M. M. and Cushman, J. H.: 1996, Macroscale thermodynamics and the chemical potential for swelling porousmedia, Center for Computational Mathematics, University of Colorado at Denver.Google Scholar
  15. 15.
    Bensoussan, A., Lions, J. L. and Papanicolaou G.: 1978, A Symptotic Analysis for Periodic Structures, North-Holland, Amsterdam.Google Scholar
  16. 16.
    Biot, M.: 1941, General theory of three-dimensional consolidation, J. Appl. Phys. 12, 155–164.Google Scholar
  17. 17.
    Biot, M.: 1955, Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys. 26, 182–185.Google Scholar
  18. 18.
    Bowen, R. M.: 1976, Theory of mixtures, in: A. C. Eringen (ed.), Continuum Physics, 3. Academic Press, New York.Google Scholar
  19. 19.
    Budkowska, B. and Fu, Q.: 1988, Some aspects of numerical analysis of creep in layered granular medium, Comput. Geotech. 5, 285–306.Google Scholar
  20. 20.
    Allen, H.: 1980, Thermodynamics, Wiley, New York.Google Scholar
  21. 21.
    Coleman, B. D. and Noll, W.: 1963, The thermodynamics of elastic materialswith heat conduction and viscosity, Arch. Rational Mech. Anal. 13, 167–178.Google Scholar
  22. 22.
    Cushman, J. H.: 1990, Molecular-scale lubrication, Nature 347, 227–228.Google Scholar
  23. 23.
    Derjaguin, B. V. and Churaev, N.V.: 1978, On the question of determining the concept of disjoining pressure and its role in the equilibrium and flow of thin films, J. Colloid Interface Sci. 66(3), 389–398.Google Scholar
  24. 24.
    Derjaguin, B. V. and Churaev, N.V.: 1989, The current state of the theory of long-range surface forces. Colloids and Surfaces 41, 223–237.Google Scholar
  25. 25.
    Derjaguin, B. V., Churaev, N. V. and Muller, V. M.: 1987, Surface Forces, Plenum Press, New York.Google Scholar
  26. 26.
    Douglas, J., Peszynska, M. and Showalter, R. E.: Single phase flow in partially fissured media, Transport in Porous Media, in press.Google Scholar
  27. 27.
    Douglas, Jr., J. and Arbogast, T.: 1990, Dual porosity models for flow in naturally fractured reservoirs, in: J. H. Cushman (ed.), Dynamics of Fluid in Hierarchical Porous Media, Academic Press, New York, pp. 177–222.Google Scholar
  28. 28.
    Eringen, A. C.: 1967, Mechanics of Continua. Wiley, New York.Google Scholar
  29. 29.
    Gee, M. L., Mcguiggan, P. M. and Israelachvili, J.: 1895- 1906, 1990, Liquid to solidlike transitions of molecularly thin films under shear, J. Chem. Phys. 93(3).Google Scholar
  30. 30.
    Gibson, R. E. and Lo, K. Y.: 1961, A theory of consolidation for soils exhibiting secondary compression. Norweg. Geotech. Inst. Publ. 41, 1–16.Google Scholar
  31. 31.
    Graham, J., Oswell, J. M. and Gray, M. N.: 1992, The effective stress concept in a saturated sand-clay buffer. Canad. Geotech. J. 29, 1033–1043.Google Scholar
  32. 32.
    Grim, R. E.: 1968, Clay Mineralogy, McGraw-Hill, New York.Google Scholar
  33. 33.
    Hassanizadeh, S. M. and Gray, W. G.: 1979, General conservation equations for multiphase systems: 1. Averaging procedure, Adv. Water Resour. 2, 131–144.Google Scholar
  34. 34.
    Hassanizadeh, S. M. and Gray, W. G.: 1979, General conservation equations for multiphase systems: 2. Mass, momenta, energy, and entropy equations, Adv. Water Resour. 2, 191–208.Google Scholar
  35. 35.
    Hassanizadeh, S. M. and Gray, W. G.: 1980, General conservation equations for multiphase systems: 3. Constitutive theory for porous media, Adv. Water Resour. 3, 25–40.Google Scholar
  36. 36.
    Hassanizadeh, S. M. and Gray, W. G.: 1993, Thermodynamic basis of capillary pressure in porous media, Water Resour. Res. 29(10), 3389–3405.Google Scholar
  37. 37.
    Hassanizadeh, S. M. and Gray, W. G.: 1993, Toward an improved description of the physics of two-phase flow, Adv. Water Resour. 16, 53–67.Google Scholar
  38. 38.
    Hornung, U. and Showalter, R. E.: 1990, Diffusion models for fractured medis, J. Math. Anal. Appl. 147, 69–80.Google Scholar
  39. 39.
    Hueckel, T.: 1992, On effective stress concepts and deformation in clays subjected to environmental loads, Canad. Geotech. J. 29, 1120–1125.Google Scholar
  40. 40.
    Hueckel, T.: 1992, Water mineral interaction in hygromechanics of clays exposed to environmental loads: a mixture theory approach, Canad. Geotech. J. 29, 1071–1086.Google Scholar
  41. 41.
    Israelachvili, J.: 1991, Intermolecular and Surface Forces, Academic Press, New York.Google Scholar
  42. 42.
    Israelachvili, J., Mcguiggan, P. M. and Homola, A. M.: 1988, Dynamic properties of molecularly thin liquid films, Science 240, 189–191.Google Scholar
  43. 43.
    Ivanov, I. B. and Kralchevsky, P. A.: 1988, Mechanics and thermodynamics of curved thin films, in: I. B. Ivanov (ed.), Surfactant Science Series 29, Dekker, New York, pp. 49–129.Google Scholar
  44. 44.
    Feda, J.: 1992, Creep of Soils and Related Phenomena, Developments in Geotechnical Engineering 68, Elsevier, New York.Google Scholar
  45. 45.
    Karabomi, S., Urai B. Smith, J., Heidug, W. and Oort, E.: 1996, The swelling of clays:Molecular simulations of the hydration of montmorillonite, Science 271, 1102–1104.Google Scholar
  46. 46.
    Keedwell, M. J.: 1984, Rheology and Soil Mechanics, Elsevier, New York.Google Scholar
  47. 47.
    Kralchevsky, P. A. and Ivanov, I. B.: 1990, Micromechanical description of curved interfaces: II Film surface tensions, disjoining pressure and interfacial stress balances, J. Colloid Interface Sci. 137(1), 235–252.Google Scholar
  48. 48.
    Lambe, T. W.: 1960, A mechanistic picture of shear strength in clay, in Proc. ASCE Research Conference on Shear Strength of Cohesive Soils, Boulder, Colorado, pp. 503–532.Google Scholar
  49. 49.
    Levy, T. and Palencia, S.: 1975, On boundary conditions for flow in porous media, Int. J. Engrg. Sci. 13, 923–940.Google Scholar
  50. 50.
    Lewis, R. W. and Tran, D. V.: 1989, Numerical simulation of secondary consolidation of soil: Finite element formulation, Int. J. Anal. Methods Geomech. 13, 1–18.Google Scholar
  51. 51.
    Li, D.: 1993, Thermodynamics of thin liquid films, in Thermodynamics and the Design, Analysis, and Improvement of Energy Systems, Amer. Soc. Mech. Eng., Advanced Energy Systems Division (Publication) AES, New York.Google Scholar
  52. 52.
    Li, D. and Neumann, A. W.: 1991, Thermodynamics of contact angle phenomena in the presence of a thin film, Advances in Colloid and Interface Sci. 36, 125–151.Google Scholar
  53. 53.
    Liu, I. S.: 1972, Method of Lagrange multipliers for exploitation of the entropy principle, Arch. Rational. Mech. Anal. 46, 131–148.Google Scholar
  54. 54.
    Low, P. F.: 1976, Viscosity of interlayer water in montmorillonites, Soil Sci. Soc. Am. J. 40, 500–505.Google Scholar
  55. 55.
    55 Low, P. F.: 1976, Viscosity of interlayer water in montmorillonites, Soil Sci. Soc Am. J. 40, 500–505.Google Scholar
  56. 56.
    Low, P. F.: 1980, The swelling of clay: II. Montmorillonite-water systems, Soils Sci. Soc. Am. J. 44(4), 667–676.Google Scholar
  57. 57.
    Low, P. F.: 1987, Structural component of the swelling pressure of clays, Langmuir 3, 18–25.Google Scholar
  58. 58.
    Low, P. F.: 1994, The clay/water interface and its role in the environment, in: Progress in Colloid and Polymer Science 95, 98–107.Google Scholar
  59. 59.
    Ma, C. and Hueckel, T.: 1992, Effects of inter-phase mass transfer in heated clays: A mixture theory, Int. J. Eng. Sci. 30(11), 1567–1582.Google Scholar
  60. 60.
    Morgensten, N. M. and Balasubramonian, B. I.: 1980, Effects of pore fluid on the swelling of clay-shale, in Proceedings of the 4th International Conference on Expansive Soils, Denver Colo, pp. 190–205.Google Scholar
  61. 61.
    Murad, M. A., Bennethum, L. S. and Cushman, J. H.: 1995, A Multiscale theory of swelling porous media: I Application to one-dimensional consolidation, Transport in Porous Media 19, 93–122.Google Scholar
  62. 62.
    Murad, M. A. and Cushman, J. H.: 1996, Multiscale flow and deformation in hydrophilic swelling porous media, Int. J. Eng. Sci. 34(3), 313–336.Google Scholar
  63. 63.
    Peszenska, M.: 1992, Mathematical analysis and numerical approach to flow through fissured media, PhD thesis, Univ. Augsburg.Google Scholar
  64. 64.
    Sanchez-Palencia, E.: 1980, Non-homogeneous media and vibration theory, in J. Ehler (ed.), Lecture Notes in Physics 127. Springer-Verlag, New York.Google Scholar
  65. 65.
    Schoen, M., Diestler, D. J. and Cushman, J. H.: 1987, Fluids in micropores. I. Structure of a simple classical fluid in a slit-pore, J. Chem. Phys. 87(9), 5464–5476.Google Scholar
  66. 66.
    Showalter, R. E.: 1991, Diffusion models with microstructure, Transport in Porous Media 6, 567–580.Google Scholar
  67. 67.
    Showalter, R. E.: 1992, Distributed Microstructure Models of Porous Media, Int. Series Numer. Math. Birkhäuser, Verlag, Basel, 1993, pp. 155–164; J. Douglas, Jr. and U. Hornung (eds), Proc. Oberwolfach Conference, 1992.Google Scholar
  68. 68.
    Sridharan, A.: 1991, Engineering behaviour of fine grained soils:Afundamental approach, Indian Geotech. J. 21(1), 1–136.Google Scholar
  69. 69.
    Sridharan, A.: 1991, Role of clay minerals in controlling the engineering properties of soils, Clay Res. 10(2), 39–47.Google Scholar
  70. 70.
    Sridharan, A. and Rao, G. V.: 1973, Mechanisms controlling volume change of saturated clays and the role of the effective stress concept, Geotechnique 23(3), 359–382.Google Scholar
  71. 71.
    Sridharan, A. and Rao, G. V.: 1982, Mechanisms controlling the secondary compression of clays, Geotechnique 32(3), 249–260.Google Scholar
  72. 72.
    Terzaghi, K.: 1942, Theoretical Soil Mechanics, Wiley, New York, 1942.Google Scholar
  73. 73.
    Truesdell, C. and Toupin, R.: 1960, The classical field theories, in Flugge (ed.), Handbuchder Physik, volume III. Springer-Verlag, New York.Google Scholar
  74. 74.
    Wang, Y. C., Murti, V. and Valliappan, S.: 1992, A transient finite element analysis of linear viscoelastic material model, Int. J. Num. Anal. Methods Geomech. 16, 265–294.Google Scholar
  75. 75.
    Wilcox, R. D.: 1990, Surface area approach key to borehole stability, Oil and Gas J. Feb. 26, 66–80.Google Scholar
  76. 76.
    Wray, W.: 1995, So Your Home is Built on Expansive Soils, Amer. Soc. Civil Eng., New York.Google Scholar
  77. 77.
    Zeevart, L.: 1986, Consolidation in the intergranular viscosity of highly compressible soils, in N. Yong and F. C. Townsend (ed.), Consolidation of Soils: Testing and Evaluation. Amer. Soc. for Testing and Materials ASTM 892, Philadelphia.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Márcio a. Murad
    • 1
  • John H. Cushman
    • 2
  1. 1.Laboratório Nacional de Computaçāo Cientifica, LNCC/CNPqRio de JaneiroBrazil
  2. 2.Center for Applied MathPurdue UniversityW. LafayetteUSA

Personalised recommendations