Transport in Porous Media

, Volume 26, Issue 3, pp 261–275 | Cite as

Generalized Forchheimer Equation for Two-Phase Flow Based on Hybrid Mixture Theory

  • L. S. Bennethum
  • T. Giorgi


In this paper, we derive a Forchheimer-type equation for two-phase flow through an isotropic porous medium using hybrid mixture theory. Hybrid mixture theory consists of classical mixture theory applied to a multiphase system with volume averaged equations. It applies to media in which the characteristic length of each phase is ‘small’ relative to the extent of the mixture. The derivation of a Forchheimer equation for single phase flow has been obtained elsewhere. These results are extended to include multiphase swelling materials which have nonnegligible interfacial thermodynamic properties.

swelling porous media high velocity flow non-Darcy flow two-phase flow multi-phase flow mixture theory Forchheimer equation unsaturated flow Darcy's law non-linear flow hybrid mixture theory isotropic function theory. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achanta, S. and Cushman, J. H.: 1994, Nonequilibrium swelling and capillary pressure relations for colloidal systems, J. Col. Int. Sci 168, 266–268.Google Scholar
  2. 2.
    Achanta, S., Cushman, J. H. and Okos, M. R.: 1994, On multicomponent, multiphase thermomechanics with interfaces, Int. J. Eng. Sci. 32(11); 1717–1738.Google Scholar
  3. 3.
    Ahmed, N. and Sunada, D. K.: 1969, Nonlinear flow in porous media, J. Hydr. Div. ASCE 95(HY6); 1847–1857.Google Scholar
  4. 4.
    Auriault, J. L.: 1987, Nonsaturated deformable porous media: Quasistatics, Transport in Porous Media 2, 45–64.Google Scholar
  5. 5.
    Auriault, J. L., Lebaigue, O. and Bonnet, G.: 1989, Dynamics of two immiscible fluids flowing through deformable porous media, Transport in Porous Media 4, 105–128.Google Scholar
  6. 6.
    Avraam, D. G. and Payatakes, A. C.: 1995, Flow regimes and relative permeabilities during steady-state two-phase flow in porous media, J. Fluid Mech. 293, 207–236.Google Scholar
  7. 7.
    Azzam, M. I. S. and Dullien, A. L.: 1973, Flow rate-pressure gradient measurements in periodically nonuniform capillary tubes, AIChE J 19, 22–229.Google Scholar
  8. 8.
    Bear, J.: 1972, Dynamics of Fluids in Porous Media, Dover, New York.Google Scholar
  9. 9.
    Beavers, G. S. and Sparrow, E. M.: 1969, Non-Darcy flow through fibrous porous media, J. Appl. Mech. Trans. ASME, December, 711–714.Google Scholar
  10. 10.
    Bennethum, L. S.: 1994, Multiscale, hybrid mixture theory for swelling systems with interfaces, PhD thesis, Purdue University, West Lafayette, Indiana, 47907.Google Scholar
  11. 11.
    Bennethum, L. S. and Cushman, J. H.: 1995, Multiscale, hybrid mixture theory for swelling systems, Part II: Constitutive theory. Int. J. Engrg. Sci., to appear.Google Scholar
  12. 12.
    Bensoussan, A., Lions, J. L. and Papanicolau, G.: 1978, Asymptotic Analysis of Periodic Structures, North-Holland, Amsterdam.Google Scholar
  13. 13.
    Bowen, R. M.: 1976, Theory of mixtures, in: Continuum Physics, Academic Press, New York.Google Scholar
  14. 14.
    Buckley, S. E. and Leverett, M. C.: 1942, Mechanism of fluid displacement in sands. Trans. Am. Inst. Mining Metall. Eng. 146, 107–116.Google Scholar
  15. 15.
    Coleman, B. D. and Noll, W.: 1963, The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rat. Mech. Anal. 13, 167–178.Google Scholar
  16. 16.
    Coulaud, O., Morel, P. and Caltagirone, J. P.: 1988, Numerical modelling of nonlinear effects in laminar flow through a porous medium, J. Fluid Mech. 190 393–407.Google Scholar
  17. 17.
    de la Cruz, V. and Spanos, T. J. T.: 1983, Mobilization of oil ganglia, AIChE J. 29, 854–858.Google Scholar
  18. 18.
    Cushman, J. H.: 1990, Molecular-scale lubrication, Nature 347(6290), 227–228.Google Scholar
  19. 19.
    Douglas, Jr., J. and Arbogast, T.: 1990, Dual porosity models for flow in naturally fractured reservoirs, In J. H. Cushman (ed.), Dynamics of Fluid in Hierarchical Porous Media, Academic Press, New York, pp. 177–222.Google Scholar
  20. 20.
    Dupuit, J.: 1863, Etudes thèoriques et pratiques sur le mouvement des eaux, Dunod, Paris.Google Scholar
  21. 21.
    Eringen, A. C.: 1967, Mechanics of Continua, Wiley, New York.Google Scholar
  22. 22.
    Eringen, A. C.: 1994, A continuum theory of swelling porous elastic solids, Int. J. Eng. Sci, 32, 1337–1349.Google Scholar
  23. 23.
    Forchheimer, P.: 1901, Wasserbewegung durch boden, Z. Ver. Deutsch. Ing. 45, 1782–1788.Google Scholar
  24. 24.
    de Genes, P. G.: 1983, Theory of slow biphasic flows in porous media, Physicochemical Hydrodynamics 4, 175–185.Google Scholar
  25. 25.
    Giorgi, T.: 1996, Derivation of the Forchheimer lawvia matched asymptotic expansions, Preprint.Google Scholar
  26. 26.
    Gray, W. G., Celia, M. A. and Reeves, P. C.: 1995, Incorporation of interfacial areas in models of two-phase flow, In Proceedings of International Kearney Foundation of Soil Science Conference: Vadose Zone Hydrology - Cutting AcrossDisciplines, University of California, Davis, September.Google Scholar
  27. 27.
    Grim, R. E.: 1968, Clay Mineralogy, McGraw-Hill, New York.Google Scholar
  28. 28.
    Hassanizadeh, S. M. and Gray, W. G.: 1979, General conservation equations for multiphase systems: 1. Averaging procedure, Adv. Water Resour. 2, 131–144.Google Scholar
  29. 29.
    Hassanizadeh, S. M. and Gray, W. G.: 1979, General conservation equations for multiphase systems: 2. Mass, momenta, energy, and entropy equations, Adv. Water Resour. 2, 191–208.Google Scholar
  30. 30.
    Hassanizadeh, S. M. and Gray, W. G.: 1980, General conservation equations for multiphase systems: 3. Constitutive theory for porous media, Adv. Water Resour. 3, 25–40.Google Scholar
  31. 31.
    Hassanizadeh, S. M. and Gray, W. G.: 1987, High velocity flow in porous media, Transport in Porous Media 2, 521–531.Google Scholar
  32. 32.
    Hassanizadeh, S.M. and Gray, W. G.: 1988, Reply to comments by Barak on ‘High velocity flow in porous media’, Transport in Porous Media 3, 319–321.Google Scholar
  33. 33.
    Hassanizadeh, S.M. and Gray, W. G.: 1990, Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries, Adv. Water Resour. 13, 169–186.Google Scholar
  34. 34.
    Hassanizadeh, S. M. and Gray, W. G.: 1993, Toward an improved description of the physics of two-phase flow, Adv. Water Resour. 16, 53–67.Google Scholar
  35. 35.
    Jones, S. C. and Roszelle, W.O.: 1978, Graphical techniques for determining relative permeability from displacement experiments, J. Petrol. Technol. 30, 807–817.Google Scholar
  36. 36.
    Kalaydjian, F.: 1987, Amacroscopic description of multiphase flow involving spacetime evolution of fluid/fluid interface, Transport in Porous Media 2, 537–552.Google Scholar
  37. 37.
    Kalaydjian, F.: 1990, Origin and quantification of coupling between relative permeabilities of a consolidated porous media, Transport in Porous Media 5, 215–229.Google Scholar
  38. 38.
    Karalis, T. K.: 1993, Water flow in non-saturated swelling soil, Int. J. Engng. Sci. 31, 751–774.Google Scholar
  39. 39.
    Kim, D. J., Diels, J. and Feyen, J.: 1992, Water movement associated with overburden potential in a shrinking marine clay soil, J. Hydrology 133, 179–200.Google Scholar
  40. 40.
    Leverett, M. C.: 1941, Capillary behavior in porous solids, Trans. Am. Inst. Mining Metall. Eng. 142, 152–169.Google Scholar
  41. 41.
    Mei, C. C. and Auriault, J. L.: 1991, The effect of the weak inertia on flow through a porous medium, J. Fluid Mech. 222, 647–663.Google Scholar
  42. 42.
    Murad, M., Bennethum, L. S. and Cushman, J. H.: 1995, A multi-scale theory of swelling porous media: I. Application to one-dimensional consolidation, Transport in Porous Media 19, 93–122.Google Scholar
  43. 43.
    Murad, M. A. and Cushman, J. H.: 1995, Multiscale flow and deformation in hydrophilic swelling porous media, Int. J. Eng. Sci., 34, 313–336.Google Scholar
  44. 44.
    Pennisi, S. and Trovato, M.: 1987, On the irreducibility of Professor G. F. Smith's representations for isotropic functions, Int. J. Eng. Sci. 25, 1059–1065.Google Scholar
  45. 45.
    Plumb, O. A. and Whitaker, S.: 1990, Diffusion, adsorption and dispersion in porous media: Small-scale averaging and local volume averaging, in: J. H. Cushman, (ed.), Dynamics of Fluid in Hierarchical Porous Media, Academic Press, New York, pp. 97–176.Google Scholar
  46. 46.
    Raats, P. A. and Klute, A.: 1968, Transport in soils: The balance of momentum, Soil Sci. Soc. Am. Proc. 32, 452–456.Google Scholar
  47. 47.
    Rose, W.: 1988, Measuring transport coefficients necessary for the description of coupled twophase flow of immiscible fluids in porous media, Transport in Porous Media 3, 163–171.Google Scholar
  48. 48.
    Rose, W.: 1990, Coupling coeffients for two-phase flow in pore spaces of simple geometry, Transport in Porous Media 5, 97–102.Google Scholar
  49. 49.
    Ruth, D. W. and Ma, H.: 1992, On the derivation of the Forchheimer equation by means of the averaging theorem, Transport in Porous Media 7, 255–264.Google Scholar
  50. 50.
    Sanchez-Palencia, E.: 1980, Non-homogeneous media and vibration theory, in Lecture Notes in Physics, Springer-Verlag, New York.Google Scholar
  51. 51.
    Scheidegger, A. E.: 1974, The Physics of Flow through Porous Media, University of Toronto Press, Toronto.Google Scholar
  52. 52.
    Schneebeli, G.: 1955, Experiences sur la limite de validité de la turbulence dans un écoulement de filtration, La Houille Blanche 2, 141–149.Google Scholar
  53. 53.
    Silber, G.: 1990, Darstellungen höherstufig-tensorwertiger isotroper funktionen, Z. Angew. Math. Mech. 70, 381–393.Google Scholar
  54. 54.
    Smith, G. F.: 1971, On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors, Int. J. Engng. Sci. 9, 899–916.Google Scholar
  55. 55.
    Tek, M. R.: 1957, Development of a generalized Darcy equation, Petrol. Trans. AIME 210, 376–378.Google Scholar
  56. 56.
    Thigpen, L. and Berryman, J. G.: 1985, Mechanics of porous material containing multiphase fluid, Int. J. Engng. Sci. 23, 1203–1214.Google Scholar
  57. 57.
    Ward, J. C.: 1964, Turbulent flow in porous media, J. Hydr. Div. ASCE 90(HY5), 1–12.Google Scholar
  58. 58.
    Whitaker, S.: 1967, Diffusion and dispersion in porous media, AIChEJ 13, 420–438.Google Scholar
  59. 59.
    Whitaker, S.: 1969: Advances in theory of fluid motion in porous media, Ind. Eng. Chem. 61(12), 14–28.Google Scholar
  60. 60.
    Witaker, S.: 1986, Flow in porous media I: A theoretical derivation of Darcy's Law, Transport in Porous Media 1, 90–104.Google Scholar
  61. 61.
    Whitaker, S.: 1986, Flow in porous media II: The governing equations for immiscible two-phase flow, Transport in Porous Media 1, 105–126.Google Scholar
  62. 62.
    Wodie, J.-C. and Levy, T.: 1991, Correction non linéaire de la loi de Darcy, C.R. Acad. Sci. Paris, Série II 312, 157–161.Google Scholar
  63. 63.
    Wright, D. E.: 1968, Nonlinear flow through granular media, J. Hydr. Div. ASCE (HY4), 851–872.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • L. S. Bennethum
    • 1
  • T. Giorgi
    • 2
  1. 1.Department of MathematicsDenverU.S.A.
  2. 2.Center for Applied Math, Math Sciences BuildingPurdue UniversityWest LafayetteU.S.A.

Personalised recommendations