Origins of life and evolution of the biosphere

, Volume 29, Issue 5, pp 451–461 | Cite as

Silica, Alumina and Clay Catalyzed Peptide Bond Formation: Enhanced Efficiency of Alumina Catalyst

  • Juraj Bujdák
  • Bernd M. Rode
Article

Abstract

Catalytic efficiencies of clay (hectorite), silica and alumina were tested in peptide bond formation reactions of glycine (Gly), alanine (Ala), proline (Pro), valine (Val) and leucine (Leu). The reactions were performed as drying/wetting (hectorite) and temperature fluctuation (silica and alumina) experiments at 85 °C. The reactivity of amino acids decreased in order Gly > Ala > Pro ≈ Val ≈ Leu. The highest catalytic efficiency was observed for alumina, the only catalyst producing oligopeptides in all investigated reaction systems. The peptide bond formation on alumina is probably catalyzed by the same sites and via similar reaction mechanisms as some alumina-catalyzed dehydration reactions used in industrial chemistry.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basiuk, V. A., Gromovoy, T. Y., Golovaty, V. G. and Glukhoy, A. M.: 1990, Origins Life Evol. Biosphere 20, 483.Google Scholar
  2. Basiuk, V. A., Gromovoy, T. Y., Glukhoy, A. M. and Golovaty, V. G.: 1991, Origins Life Evol. Biosphere 21, 129.Google Scholar
  3. Basiuk, V. A. and Gromovoy, T. Y.: 1994, Collect Czech Chem. Commun. 59, 461.Google Scholar
  4. Basiuk, V. A., Gromovoy, T. Y., Chuiko, A. A., Soloshonok, V. A. and Kukhar, V. P.: 1992, Synthesis 449.Google Scholar
  5. Basiuk, V. A.: 1992, Origins Life Evol. Biosphere 22, 333.Google Scholar
  6. Bernal, J. D. (1951) The physical basic of life. Routledge and Kegan Paul, LondonGoogle Scholar
  7. Boehm, H. P.: 1966, Advances in Catalysis 16, 179.Google Scholar
  8. Bujdák, J., Slosiariková, H., Texler, N., Schwendinger, M. and Rode, B. M.: 1994. Mh. Chemie 25, 1033.Google Scholar
  9. Bujdák, J., Eder, A., Yongyai, Y., Faybíková, K. and Rode, B. M.: 1995, Origins. Life. Evol. Biosphere 25, 431Google Scholar
  10. Bujdák, J., Eder, A., Yongyai, Y., Faybíková, K. and Rode, B. M.: 1996a, J. Inorg. Biochem. 61, 69.PubMedGoogle Scholar
  11. Bujdák, J., Hoang, L. S. and Rode, B. M.: 1996b, J. Inorg. Biochem. 63, 119.Google Scholar
  12. Bujdák, J., Hoang, L. S., Yongyai, Y. and Rode, B. M.: 1996c, Catal. Letters. 37, 267.Google Scholar
  13. Bujdák, J. and Rode, B. M.: 1995, Geol. Carpathica, Ser. Clays 4, 37.Google Scholar
  14. Bujdák, J. and Rode, B. M.: 1996, J. Mol. Evol. 43, 326.PubMedGoogle Scholar
  15. Bujdák, J. and Rode, B. M.: 1997a, React. Kinet. Catal. Lett. 62, 281.Google Scholar
  16. Bujdák, J. and Rode, B. M.: 1997b, J. Mol. Evol. 45, 457.Google Scholar
  17. Cairns-Smith, A. G. and Hartman, H.: 1988, Clay Minerals and the Origin of Life, Cambridge University Press, U.K.Google Scholar
  18. Collins, J. R., Loew, G. H., Luke, B. T. and White, D. H.: 1988, Origins Life Evol. Biosphere 18, 107.Google Scholar
  19. Degens, E. T., Mathéja, J. and Jackson, T. A.: 1970, Nature 227, 492.PubMedGoogle Scholar
  20. Flores, J. J., Bonner, W. A.: 1974, J. Mol. Evol. 3, 49.PubMedGoogle Scholar
  21. Gervasini, A., Bellusi, G., Fenyvesi, J. and Auroux, A.: 1995, J. Phys. Chem. 99, 5117.Google Scholar
  22. Gromovoy, T. Y., Basiuk, V. A. and Chuiko, A. A.: 1991, Origins Life Evol. Biosphere 21, 119.Google Scholar
  23. Hulshoff, J. and Ponnamperuma, C.: 1976, Origins of Life 7, 197.PubMedGoogle Scholar
  24. Keefe, A. D. and Miller, S. L.: 1995, J. Mol. Evol. 41, 693.PubMedGoogle Scholar
  25. Komadel, P., Madejová, J., Janek, M., Gates, W. P., Kirkpatrick, R. J. and Stucki, J. W.: 1996, Clays Clay. Miner. 44, 228.Google Scholar
  26. Lahav, N., White, D. and Chang, S.: 1978, Science 201, 67.Google Scholar
  27. Lahousse, C., Mauge, F., Bachelier, J. and Lavalley, J. C.: 1995, J. Chem. Soc. Faraday Trans. 91, 2907.Google Scholar
  28. Lawless, J. G. and Levi, N.: 1979, J. Mol. Evol. 13, 281.PubMedGoogle Scholar
  29. Macklin, J. W. and White, D. H.: 1985, Smectrochim. Acta 41, 851.Google Scholar
  30. Olah, G. A., Doggweiler, H., Felberg, J. D., Frohlich, S. and Grdina, M. J.: 1984, J. Amer. Chem. Soc. 106, 2143.Google Scholar
  31. Paecht-Horowitz, M.: 1977, BioSystems 9, 93.PubMedGoogle Scholar
  32. Paecht-Horowitz, M.: 1978, J. Mol. Evol. 11, 101.PubMedGoogle Scholar
  33. Paecht-Horowitz, M., Berger, J. and Katchalsky, A.: 1970, Nature 228, 636.PubMedGoogle Scholar
  34. Paecht-Horowitz, M. and Eirich, F. R.: 1988, Origins Life Evol. Biosphere 18, 359.Google Scholar
  35. Paecht-Horowitz, M. and Lahav, N.: 1977, J. Mol. Evol. 10, 73.PubMedGoogle Scholar
  36. Pines, H. and Manassen, J.: 1966, Advances in Catalysis 16, 49.Google Scholar
  37. Ponnamperuma, C., Shimoyama, A. and Friebele, J: 1982, Origins Life Evol. Biosphere 12, 9.Google Scholar
  38. Rao, M., Odom, D. G. and Oro, J.: 1980, J. Mol. Evol. 15, 317.PubMedGoogle Scholar
  39. Rabinowitz, J., Flores, J., Kresbach, R. and Rogers, G.: 1969, Nature 224, 795.PubMedGoogle Scholar
  40. Rohlfing, D. L. and McAlhaney, W. W.: 1976, Biosystems 8, 139.PubMedGoogle Scholar
  41. Shiffino, R. S. and Merrill, R. P.: 1993, J. Phys. Chem. 97, 6425.Google Scholar
  42. Siffert, B. and Kessaissia, S.: 1978, Clay Miner. 13, 255.Google Scholar
  43. Takaoka, O., Yamagata, Y. and Inomata, K., 1991: Origins Life Evol. Biosphere 21, 113.Google Scholar
  44. Warden, J. T., McCullough, J. J., Lemmon, R. M. and Calvin, M.: 1974, J. Mol. Evol. 4, 189.PubMedGoogle Scholar
  45. White, D. H., Kennedy, R. M. and Macklin, J.: 1984, Origins Life Evol. Biosphere 14, 273.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Juraj Bujdák
    • 1
  • Bernd M. Rode
    • 2
  1. 1.Institute of Inorganic ChemistrySlovak Academy of SciencesBratislavaSlovakia
  2. 2.Institute of General, Inorganic and Theoretical ChemistryUniversity of InnsbruckInnsbruckAustria

Personalised recommendations