Advertisement

Transport in Porous Media

, Volume 26, Issue 3, pp 319–338 | Cite as

Multiscale Structures to Describe Porous Media Part II: Transport Properties and Application to Test Materials

  • Ke Xu
  • Jean-Francois Daian
  • Daniel Quenard
Article

Abstract

A renormalization method for the computation of the transport properties of a porous medium modelled as a multiscale random network is proposed. The method applies to electrical conduction, molecular diffusion, hydraulic transport under low Reynolds number, transport of condensable vapour, in the medium fully or partially saturated by one or two immiscible fluids. For 31 test materials, the method previously exposed by the authors for the reconstitution of the pore structure from the mercury intrusion curve is applied. Then, the intrinsic permeability is computed. The results are in good agreement with the measured permeability.

percolation theory renormalization multiscale networks mercury intrusion porosimetry transport properties effective properties permeability. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, P. M.: 1992, Porous Media. Geometry and Transports, Butterworth-Heineman, London.Google Scholar
  2. Bentz, D. P. and Martys, N. S.: 1994, Hydraulic radius and transport in reconstructed threedimensional porous media, Transport in Porous Media 17 (3), 221–238.Google Scholar
  3. Bruggeman, D. A. G.: 1935, Dielectric constant and conductivity of mixtures of isotropic materials, Ann. Physik. (7) 5 (24), 636–650.Google Scholar
  4. Charlaix, E., Guyon, E. and Roux, S.: 1987, Permeability of a random array of fractures of widely varying apertures, Transport in Porous Media 2, 31–43.Google Scholar
  5. Daïan, J.-F., Xu, K. and Quenard, D.: 1994, Invasion and transport processes in multiscale model structure for porous media, in: J. Rouquerol et al. (eds), Characterization of Porous Solids III, Elsevier, Amsterdam.Google Scholar
  6. De Vries, D. A.: 1975, Heat transfer in soils, in: D. A. De Vries and N. H. Afgan (eds), Heat and Mass Transfer in the Biosphere, Wiley, London.Google Scholar
  7. Garboczi, E. J., Bentz, D. P.: 1992, Computer simulation of the diffusivity of cement-based materials, J. Mat. Sci. 27, 2083–2092.Google Scholar
  8. Gertis, K. and Wolfseher, U.: 1976, Isothermer Gastransport in porosen Stoffen aus Gas Kinetischer Sicht, Deut. Ausschuss Stahlb. 258, 38–62.Google Scholar
  9. Halamickova, P.: 1993, The influence of sand content on the micro structure development and transport properties of mortars, Master of Applied Science, University of Toronto, Canada.Google Scholar
  10. Halamickova, P., Detwiler, R. J., Bentz, D. P. and Garboczi, E. J. (1994) Water permeability and chloride ion diffusion in Portland cement mortars: relationship to sand content and critical pore diameter, Cement Concrete Res. 25(4), 790–802.Google Scholar
  11. Hinrichsen, E. L., Aharony, A., Feder, J., Hansen, A., Tortstein, J. and Hardy, H. H.: 1993, A fast algorithm for estimating large-scale permeabilities of correlated anisotropic media, Transport in Porous Media 12(1), 55–72.Google Scholar
  12. Kew-Ho, L. and Sun-Tak, H.: 1986, The transport of condensible vapors through a micro porous vicor glass membrane, J. Colloïds Interface Sci. 110(2), 544–555.Google Scholar
  13. King, P. R.: 1989, The use of renormalization for calculating effective permeability, Transport in Porous Media 4(1), 37–58.Google Scholar
  14. King, P. R., Muggerride, A. H. and Price, W. G.: 1993, Renormalization calculation of immiscible flow, Transport in Porous Media 12(3), 237–260.Google Scholar
  15. Kirkpatrick, S.: 1973, Percolation and conduction, Rev. Modern Phys. 45, 574–588.Google Scholar
  16. Neimark, A. V.: 1989, Multiscale percolation systems, Soviet Phys. JETP 69(4), 786–791.Google Scholar
  17. Quenard, D. and Sallée, H.: 1992, Water vapour adsorption and transfer in cement-based materials, Mat. Struct. 25, 515–522.Google Scholar
  18. Sahimi, M.: 1994, Applications of Percolation Theory, Taylor and Francis, London.Google Scholar
  19. Saliba, J. and Daïan, J.-F.: 1991, Détermination d'un réseau aléatoire de pores pour modéliser la sorption et la migration d'humidité dans un mortier de ciment, Int. J. Heat Mass Transfer 34(8), 2081–2096.Google Scholar
  20. Sallès, J., Thovert, J. F. and Adler, P. M.: 1993, Reconstructed porous media and their application to fluid flow and solute transport, J. Contam. Hydrol. 13, 3–22.Google Scholar
  21. Schwartz, L. M., Auzerais, F., Dunsmuir, J., Martys, N., Bentz, D. P. and Torquato, S.: 1993, Transport and diffusion in three dimensional composite media, Physica A: Proceedings of the 3rd International Meeting on Electrical Transport and Optical Properties of Inhomogeneous Media.Google Scholar
  22. Science Project Report: 1993, Characterization of micro structure as a tool for prediction of moisture transfer in porous media, Report 1, CT 91- 937.Google Scholar
  23. Stauffer, D. and Aharony, A.: 1994, Introduction to Percolation Theory, rev. 2nd edn, Taylor and Francis.Google Scholar
  24. Thompson, A. H., Katz, A. J. and Krohn, C.E.: 1987, The micro geometry and transport properties of sedimentary rocks, Adv. Phys. 36(5), 625–694.Google Scholar
  25. Xu, K.: 1995, Structures multiéchelles modèles pour la description des matériaux poreux et l'estimation de leurs propriétés de transport, Thèse de Doctorat, Université Joseph Fourier, Grenoble, France.Google Scholar
  26. Xu, K., Daïan, J.-F. and Quenard, D.: 1997, Multiscale structures to describe porous media. Part I: Theoretical background and invasion by fluids. Transport in Porous Media 26(1), 51–73.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Ke Xu
    • 1
  • Jean-Francois Daian
    • 2
  • Daniel Quenard
    • 3
  1. 1.Centgre d'Etude de la Neige (Météo-France)Saint Martin d'HèresFrance
  2. 2.Laboratoire d'Etude des Transferts en Hydrologie et EnvironnementUniversité Joseph Fourier, Institut National Polytechnique de Grenoble, Centre National de la Recherche ScientifiqueFrance
  3. 3.Centre Scientifique et Technique du BâtimentSaint Martin d'HèresFrance

Personalised recommendations