Advertisement

Transport in Porous Media

, Volume 30, Issue 1, pp 75–86 | Cite as

Non-Newtonian Flow in a Variable Aperture Fracture

  • Vittorio Di Federico
Article

Abstract

The transmissivity of a variable aperture fracture for flow of a non-Newtonian, purely viscous power-law fluid with behavior index n is studied. The natural logarithm of the fracture aperture is considered to be a two-dimensional, spatially homogeneous and correlated Gaussian random field. We derive an equivalent fracture aperture for three flow geometries: (1) flow perpendicular to aperture variation; (2) flow parallel to aperture variation; (3) flow in an isotropic aperture field. Under ergodicity, results are obtained for cases 1 and 2 by discretizing the fracture into elements of equal aperture and assuming that the resistances due to each aperture element are, respectively, in parallel and in series; for case 3, the equivalent aperture is derived as the geometric mean of cases 1 and 2. When n=1 all our expressions for the equivalent aperture reduce to those derived in the past for Newtonian flow and lognormal aperture distribution. As log-aperture variance increases, the equivalent aperture is found to increase for case 1, to decrease for case 2, and to be a function of flow behavior index n for case 3.

fracture aperture heterogeneity non-Newtonian power-law fluid groundwater transmissivity nonlinear seepage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barenblatt, G. I., Entov, V. M., and Ryzhik, V. M.: 1990, Theory of Fluid Flows Through Natural Rocks, Kluwer Acad. Publ., Dordrecht.Google Scholar
  2. Bear, J.: 1972, Dynamics of Fluids in Porous Media, Elsevier, New York.Google Scholar
  3. Bird, R. B., Stewart, W. E., and Lightfoot, E. N.: 1960, Transport Phenomena, Wiley, New York.Google Scholar
  4. Brown, S. R.: 1987, Fluid flow through rock joints: the effect of surface roughness, J. Geophys. Res. B92(2), 1337-1347.Google Scholar
  5. Brown, S. R.: 1989, Transport of fluid and electric current through a single fracture, J. Geophys. Res. B94(7), 9429-9438.Google Scholar
  6. Brown, D. M.: 1984, Stochastic analysis of flow and solute transport in a variable aperture rock fracture, MS Thesis, Mass. Inst. of Technology.Google Scholar
  7. Chabra, R. P.: 1994, Discussion on 'Macroscopic conductivities for flow of Bingham plastics in porous media', by R. P. Vradis and A. L. Protopapas, J. Hydr. Eng., ASCE 120(8), 994-997.Google Scholar
  8. Di Federico, V., and Guadagnini, A.: 1997, Impact of aperture variability on flow and transport properties of a single fracture, Proc. XXVII IAHR Congress, S. Francisco, Theme C, 228-233.Google Scholar
  9. Gelhar, L. W.: 1987, Application of stochastic models to solute transport in fractured rocks, Swedish Nuclear Fuel and Waste Management Company, SKB Tech. Rpt. 87-05, Stockholm, Sweden.Google Scholar
  10. Gelhar, L. W.: 1993, Stochastic Subsurface Hydrology, Prentice-Hall, Englewood Cliffs.Google Scholar
  11. Goldstein, R. V., and Entov, V. M.: 1994, Quantitative Methods in Continuum Mechanics, Wiley, New York.Google Scholar
  12. Gradshteyn, I. S. and Ryzhik, I. M.: 1994, Table of Integrals, Series, and Products. (ed. A. Jeffrey), Academic Press, New York.Google Scholar
  13. Hakami, E., and Larsson, E.: 1996, Aperture measurement and flow experiments on a single natural fracture, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 33, 395-405.Google Scholar
  14. Kutilek, M.: 1972, Non-Darcian flow of water in soils, Laminar region, in Fundamentals of Transport Phenomena in Porous Media, Dev. Soil Sci. 2, IAHR, Elsevier, Amsterdam, pp. 327-340.Google Scholar
  15. James, D. F.: 1984, Non-Newtonian effects in porous media flow, Proc. IX Intnl. Congress on Rheology, Mexico, 279-283.Google Scholar
  16. Johns, R. A., Steude, J. S., Castanier, L. M., and Roberts, P. V.: 1993, Nondestructive measurements of fracture aperture in crystalline rock cores using X ray computed tomography, J. Geophys. Res. B98(2), 1889-1900.Google Scholar
  17. Moreno, L., Tsang, Y. W., Tsang, C. F., Hale, F. V., and Neretnieks, I.: 1988, Flow and tracer transport in a single fracture: a stochastic model and its relation to some field observations, Water Resour. Res. 24(12), 2033-2048.Google Scholar
  18. Neuzil, C. E., and Tracy, J. V.: 1981, Flow through fractures, Water Resour. Res. 17(1), 191-199.Google Scholar
  19. Pop, I., and Nakamura, S.: 1996, Laminar boundary layer flow of power-law fluids over wavy surfaces, Acta Mech. 115, 55-66.Google Scholar
  20. Savins, J. G.: 1969, Non-Newtonian flow through poros media, Ind. Eng. Chem. 6(10), 18-47.Google Scholar
  21. Silliman, S. E.: 1989, An interpretation of the difference between aperture estimates derived from hydraulic and tracer tests in a single fracture, Water Resour. Res. 25(10), 2275-2283.Google Scholar
  22. Snow, D. T.: 1970, The frequency and aperture of fractures in rock, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 7, 23-40.Google Scholar
  23. Tsang, Y. W.: 1984, The effect of tortuosity on fluid flow through a single fracture, Water Resour. Res. 20(9), 1209-1215.Google Scholar
  24. Tsang, Y. W., and Tsang, C. F.: 1987, Channel model of flow through fractured media, Water Resour. Res. 23(3), 467-479.Google Scholar
  25. Tsang, Y. W.: 1992, Usage of 'equivalent apertures' for rock fractures as derived from hydraulic and tracer tests, Water Resour. Res. 28(5), 1451-1455.Google Scholar
  26. Tsay, R. Y., and Weinbaum, S.: 1991, Viscous flow in a channel with cross-bridging fibers: exact solutions and Brinkman approximations, J. Fluid Mech. 226, 125-148.Google Scholar
  27. Vickers, R. A., Neuman, S. P., Sully, M. J., and Evans, D. D.: 1992, Reconstruction and geostatistical analysis of multiscale fracture apertures in a large block of welded tuff, Geophys. Res. Lett. 19, 1029-1032.Google Scholar
  28. Vradis, G. C., and Protopapas, A. L.: 1993, Macroscopic conductivities for flow of Bingham plastics in porous media, J. Hydr. Eng., ASCE 119(1), 95-108.Google Scholar
  29. Zimmerman, R. W., Kumar, S., and Bodvarsson, G. S.: 1991, Lubrication theory analysis of the permeability of rough-walled fractures, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 28(4), 325-331.Google Scholar
  30. Zimmerman, R. W. and Bodvarsson, G. S.: 1996, Hydraulic conductivity of rock fractures, Transport in Porous Media 23(1), 1-30.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Vittorio Di Federico
    • 1
  1. 1.DISTART, Idraulica, Universit di BolognaBolognaItaly

Personalised recommendations