Transport in Porous Media

, Volume 26, Issue 1, pp 25–49 | Cite as

Modelling and Numerical Simulations of Contaminant Transport in Naturally Fractured Porous Media

  • Mauricio Kischinhevsky
  • Paulo Jorge Paes-leme


Models for incompressible underground flows through naturally fractured formations subjected to high-level nuclear waste contamination are introduced and studied. They consider a chain of contaminants that decay into other species, allowing the monitoring of descendant radioactive species as well. A simulator that describes scenarios of long distance effects in case of leakage from a repository placed in such rock formations was developed. The simulator includes features like high accuracy and slowly increasing time steps in order to handle phenomena of timescale of centuries with detailed description of the transient phase, where few days is the adequate time scale.

nuclear contaminant transport naturally fractured media saturated formations unsaturated formations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ab 91] Abelin, H., Birgersson, L., Moreno, L., Widén, H., Ågren, T. and Neretnieks, I.: 1991, Alarge-scale flowand tracer experiment in granite 2. results and interpretation, Water Resour. Res. 27(12), 3119–3135.Google Scholar
  2. [AnTaPl 84] Anderson, D. A., Tannehill, J. C. and Pletcher, R. H.: 1984, Computational Fluid Mechanics and Heat Transfer, Hemisphere Publ. Corporation.Google Scholar
  3. [Ar 88] Arbogast, T.: 1988, The double porosity model for single phase flow in naturally fractured reservoirs; in: M. Wheeler (ed.), Numerical Simulation in Oil Recovery, 11, IMA Vol. Math. Appl., Springer-Verlag, 47–66.Google Scholar
  4. [BaEnRy 90] Barenblatt, G. I., Entov, V. M. and Ryzhik, V. M.: 1990, Theory of Fluid Flows through Natural Rocks, Kluwer Acad. Publ., Dordrecht.Google Scholar
  5. [BaZhKo 60] Barenblatt, G. I., Zheltov, Y. P. and Kochina, I. N.: 1960, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech. 24, 1286–1303.Google Scholar
  6. [Be 75] Bear, J.: 1975, Dynamics of Fluids in Porous Media, Elsevier, New York.Google Scholar
  7. [Bi 81] Bibby, R.: 1981, Mass transport of solutes in dual-porosity media, Water Resour. Res. 17(4), 1075–1081.Google Scholar
  8. [BoNoLo] Bodvarsoon, G. S., Noorishad, J. and Long, J.C. S.: Nuclearwaste fund: development of hydrologic models and applications to field test designs for unsaturated fractured tuff formations, US 183, Lawrence Berkeley Laboratory Report.Google Scholar
  9. [CuGi 94] Cushman, J. H., Hu, X. and Ginn, T. R.: 1994, Nonequilibrium statistical mechanics of preasymptotic dispersion, J. Stat. Phys. 75(5/6), 859–878.Google Scholar
  10. [DoArPa 89] Douglas, Jr, J., Arbogast, T. and Paes-Leme, P. J.: 1989, Two models for the waterflooding of naturally fractured reservoirs, Proceedings, Tenth SPE Symposium on Reservoir Simulation, Society of Petroleum Engineers, Dallas, Texas, SPE 18425, pp. 219–225.Google Scholar
  11. [DoAr 90] Douglas, Jr., J. and Arbogast, T.: 1990, Dual porosity models for flow in naturally fractured reservoirs, in: J. H. Cushman, (ed), Dynamics of Fluids in Hierarchical Porous Formations, Academic Press, New York, pp. 177–221.Google Scholar
  12. [Do 93] Douglas, Jr, J., Arbogast, T., Paes-Leme, P. J., Hensley, J. L. and Nunes, N. P.: 1993, Immiscible displacement in vertically fractured reservoirs, Transport in Porous Media, 12, 73–106.Google Scholar
  13. [Do 87] Douglas, Jr, J., Paes-Leme, P. J., Arbogast, T. and Schmitt, T.: 1987, Simulation of flow in naturally fractured petroleum reservoirs, Ninth SPE Symposium on Reservoir Simulation, Society of Petroleum Engineers, Dallas, Texas, Paper SPE 16019, pp. 271–279.Google Scholar
  14. [DoPaHe 91] Douglas, Jr., J., Paes-Leme, P. J. and Hensley, J. L.: 1991. A limit form of the equations for immiscible displacement in a fractured reservoir, Transport in Porous Media 6, 549–565.Google Scholar
  15. [Dy 90] Dykhuizen, R. C.: 1990, A new coupling term for dual-porosity models, Water Resour. Res. 26, 351–356.Google Scholar
  16. [Dy 91] Dykhuizen, R. C.: 1991, Reply to Comment by Maloszewski and Zuber, Water Resour. Res. 27, 2153.Google Scholar
  17. [Ga 74] Gale, J., Taylor, R. L., Whiterspoon, P. and Ayatollahi, M. S.: 1974, Flow in rocks with deformable fractures, in: Oden, ZienKrewig, Gallagher and Taylor (eds), Finite Element Methods in Flow Problems, pp. 583–598.Google Scholar
  18. [Gu 90] Gupta, A. D.: 1990, Accurate resolution of physical dispersion in the multidimensional numerical modelling of miscible and chemical displacement, SPE Reservoir Eng. November, 581–588.Google Scholar
  19. [Ha 83] Harten, A.: 1983, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys. 49, 357–393.Google Scholar
  20. [Ka 91] Kang, C. H., Chambré, P. L., Pigford, T. H. and Lee, W. W.-L.: 1991, Near-field transport of radioactive chains, in: Proceedings of the 2nd Annual International Conference on High Level Radioactive Waste Management, Las Vegas, pp. 1054–1060.Google Scholar
  21. [Ki 93] Kischinhevsky, M.: 1993, Modelagem e simulaç #x00E3;o numérica paralela do escoamento de fluidos com contaminantes radioativos em meios porosos naturalmente fraturados, Ph.D. Thesis, PUC/RJ [in Portuguese].Google Scholar
  22. [Li 83] Lindblom, U.: 1983, Influence of the temperature on groundwater movements in jointed rock masses with application to radioactive waste disposal, 5th Int. Conf. Rock Mechanics, Montreux.Google Scholar
  23. [Lo 82] Long, J., Remer, J., Wilson, C. and Witherspoon, P.: 1982, Porous media equivalents for networks of discontinuous fractures, Water Resour. Res. 18(3), 645–658.Google Scholar
  24. [MaZu 92] Maloszewski, P. and Zuber, A.: 1992, On the calibration and validation of mathematical models for the interpretation of tracer experiments in groundwater Adv. Water Resour. 15, 47–62.Google Scholar
  25. [Mo 88] Moreno, L., Tsang, Y. W., Tsang, C. F., Hale, F. V., and Neretnieks, I.: 1988, Flow and tracer transport in a single fracture: A stochastic model and its relation to some field observations, Water Resour. Res. 24(12), 2033–2048.Google Scholar
  26. [Mo 90] Moreno, L., Tsang, C.F., Tsang, Y.W., and Neretnieks, I.: 1990, Some anomalous features of flow and solute transport arising from fracture aperture variability, Water Resour. Res. 26(10), 2377–2391.Google Scholar
  27. [Pa 91] Paes-Leme, P. J., Malamut, C., Paschoa, A.S., Pontedeiro, E. and Saad, S.: 1991, Two double porosity models for groundwater radioactive contamination, Int. High Level Rad. Waste Conf.; Las Vegas.Google Scholar
  28. [PaMaPo 92] Paes-Leme, P. J., Malamut, C. and Pontedeiro, E.: 1992, Modelos de Dupla Porosidade na Dispersão de Rejeitos deAltoNível, IVCongresso Geral de Energia Nuclear; Rio de Janeiro.Google Scholar
  29. [PiCoCu 92] Pinto, A. C. C., Corrêa, A. C. F., Cunha, M. C. C.: 1993, High resolution schemes for conservation laws - applications to reservoir engineering, SPE Paper No. 24262.Google Scholar
  30. [PrWaTs 90a] Pruess, K., Wang, J. S. Y., Tsang, Y.W.: 1990, On thermohydrologic conditions near high-level nuclear wastes emplaced in partially saturated fractured tuff 1. Simulation studies with explicit consideration of fracture effects, Water Resour. Res. 26(6), 1235–1248.Google Scholar
  31. [PrWaTs 90b] Pruess, K., Wang, J. S. Y. and Tsang, Y. W.: 1990, On Thermohydrologic conditions near high-level nuclear wastes emplaced in partially saturated fractured tuff 2. Effective continuum approximation, Water Resour. Res. 26(6), 1249–1261.Google Scholar
  32. [PrWu 93] Pruess, K. and Wu, Y-S.: 1993, A new semi-analytical method for numerical simulation of fluid and heat flow in fractured rocks, SPE Adv. Technol. Ser. 1(2), 63–72.Google Scholar
  33. [Ra 81] Rasmussen, T. C.: 1981, Diffusion and sorption in particles and two-dimensional dispersion in a porous medium, Water Resour. Res. 17(2), 321–328.Google Scholar
  34. [Ra 91] Rasmussen, T.C.: 1991, Steady fluid flow and travel times in partially saturated fractures using a discrete air-water interface, Water Resour. Res. 27(1), 67–76.Google Scholar
  35. [RoGa 87] Rouleau, A. and Gale, J.: 1987, Stochastic discrete fractures simulation of groundwater flow into an underground excavation in granite, Int. J. Rock Mech. Mineral Sci., 24(2), 99–112.Google Scholar
  36. [RuBl 91] Rubin, B. and Blunt, M.J.: 1991, Higher-order implicit flux limiting schemes for black-oil simulation, SPE Paper No. 21222, February.Google Scholar
  37. [RuWh 83] Russell, T. F. and Wheeler, M. F.: 1983, Finite element and finite difference methods for continuous flows in porous media, in: The Mathematics of Reservoir Simulation SIAM, Chapter II.Google Scholar
  38. [Sa 84] Samamego, J. A. et al.: 1984, The prediction of water flow through discontinuity networks into underground excavations, in: Int. Sem. on the Design and Performance of Underground Excavations, Cambridge Univ. Press.Google Scholar
  39. [Sw 84] Sweby, P. K.: 1984, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal. 21(5), October.Google Scholar
  40. [Ts 88] Tsang, Y. W., Tsang, C. F., Neretnieks, I. and Moreno, L.: 1988, Flow and tracer transport in fractured media: a variable aperture channel model and its properties, Water Resour. Res., 24(12), 2049–2060.Google Scholar
  41. [WaRo 63] Warren, J. E. and Root, P. J.: 1963, The behavior of naturally fractured reservoirs, Soc. Pet. Eng. J. 3, 245–255.Google Scholar
  42. [Wi 86] Witherspoon, P.: 1986, Flow of groundwater in fractured rocks, Bull. Int. Association of Engineering Geology, Vol. 34.Google Scholar
  43. [Zi et al. 93] Zimmerman, R. W., Chen, G., Hadgu, T. and Bodvarsson, G.S.: 1993, A numerical dual-porosity model with semi-analytical treatment of fracture/matrix flow, Water Resour. Res. 29(7), 2127–2137.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Mauricio Kischinhevsky
    • 1
    • 2
  • Paulo Jorge Paes-leme
  1. 1.Departamento de Computa¸aoUniversidade Federal FluminenseNiteróiBrasil
  2. 2.Center for Applied MathematicsPurdue UniversityWest LafayetteU.S.A.

Personalised recommendations