Skip to main content
Log in

A Multiscale Network Model for Simulating Moisture Transfer Properties of Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A multiscale network model is presented to model unsaturated moisture transfer in hygroscopic capillary-porous materials showing a broad pore-size distribution. Both capillary effects and water sorption phenomena, water vapour and liquid water transfer are considered. The multiscale approach is based on the concept of examining the porous space at different levels of magnification. The conservation of the water vapour permeability of dry material is used as scaling criterion to link the different pore scales. A macroscopic permeability is deduced from the permeabilities calculated at the different levels of magnification. Each level of magnification is modelled using an isotropic nonplanar 2D cross-squared network. The multiscale network simulates the enhancement of water vapour permeability due to capillary condensation, the hysteresis phenomenon between wetting and drying, and the steep increase of moisture permeability at the critical moisture saturation level. The calculated network permeabilities are compared with experimental data for calcium silicate and ceramic brick and a good agreement is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blunt, M., King, J. M. and Scher, H.: 1992, Simulation and theory of two-phase flow in porous media, Phys. Rev. A 46(12), 7680-7699.

    Google Scholar 

  • Chandler, R., Koplik, J., Lerman, K. and Willemsen, J. F.: 1982, Capillary displacement and percolation in porous media, J. Fluid Mech. 119, 249-267.

    Google Scholar 

  • Diaz, C. E., Chatzis, I. and Dullien, F. A. L.: 1987, Simulation of capillary pressure curves using bond correlated site percolation on a simple cubic network, Transport in Porous Media 2(3), 215-240.

    Google Scholar 

  • Constantinides, G. N. and Payatakes, A. C.: 1989, A three dimensional network model for consolidated porous media: basic studies, Chem. Engng. Comm. 81, 55-81.

    Google Scholar 

  • Crank, J.: 1989, The Mathematics of Diffusion, Oxford University Press, Oxford.

    Google Scholar 

  • Crausse, P., Bacon, G. and Bories, S.: 1981, Etude fondamentale des transfers couplés chaleur-masse en milieu poreux, Int. J. Heat Mass Transfer 24(6), 991-1004.

    Google Scholar 

  • Descamps, F.: 1997, Continuum and discrete modelling of isothermal water and air transfer in porous media, PhD Thesis, Catholic University of Leuven, Leuven, Belgium.

    Google Scholar 

  • Dullien, F. A. L.: 1979, Porous Media: Fluid Transport and Pore Structure, Academic Press, New York.

    Google Scholar 

  • Durner, W.: 1994, Hydraulic conductivity estimations for soils with heterogeneous pore structure, Water Resour. Res. 30, 211-223.

    Google Scholar 

  • Fatt, I.: 1956, The network model of porous media: III. The dynamic properties of networks with tube radius distribution, Trans. AIME Petrol. Div. 207, 164-177.

    Google Scholar 

  • Gummerson, R. J., Hall, C., Hoff, W. D., Hawkes, R., Holland, G. N. and Moore, W. S.: 1979, Unsaturated water flow within porous materials observed by NMRimaging, Nature 281, 56-57.

    Google Scholar 

  • Ioannidis, M. A. and Chatzis, I.: 1993, Network modelling of pore structure and transport properties of porous media, Chem. Engng. Sci. 48(5), 951-972.

    Google Scholar 

  • Jerauld, G. R., Hatfield, J. C., Scriven, L. E. and Davis, H. T.: 1984, Percolation and conduction on Voronoi and triangular networks: a case study in topological disorder, J. Phys. C 17, 1519-1529.

    Google Scholar 

  • Kamp, C. L.: 1988, Le transfert d´humidité dans la pâte de ciment durcie, Chantier Suisse 19(5), 419-424.

    Google Scholar 

  • Koplik, J.: 1982, Creeping flow in two-dimensional networks, J. Fluid Mech. 119, 219-247.

    Google Scholar 

  • Koplik, J. and Lasseter, T. J.: 1985, Two-phase flow in random network models of porous media, Soc. Petrol. Engng. J. 25, 89-100.

    Google Scholar 

  • Lenormand, R., Toboul, E. and Zarcone, C.: 1988, Numerical models and experiments on immiscible displacements in porous media, J. Fluid Mech. 189, 165-187.

    Google Scholar 

  • Lin, C. and Cohen, M. H.: 1982, Quantitative methods for microgeometric modelling, J. Appl. Phys. 53, 4152-4165.

    Google Scholar 

  • Neimark, A. V.: 1989, Multiscale percolation systems, Sov. Phys. JETP 69(4), 786-791.

    Google Scholar 

  • Payatakes, A. C. and Dias, M. M.: 1984, Immiscible microdisplacement and ganglin dynamics in porous media, Rev. Chem. Engng. 85-174.

  • Philip, J. R.: 1955, Numerical solution of equations of the diffusion type with diffusivity concentration-dependent, Trans. Faraday Soc. 51, 885-892.

    Google Scholar 

  • Philip, J. R. and de Vries, D. A.: 1957, Moisture movement in porous materials under temperature gradients, Trans. Am. Geophys. Un. 38, 222-232.

    Google Scholar 

  • Prat, M.: 1995, Isothermal drying of non-hygroscopic capillary-porous materials as an invasion percolation process, Int. J. Multiphase Flow 21(5), 875-892.

    Google Scholar 

  • Quenard, D.: 1989, Adsorption et transfer d´humidité dans les matériaux hygroscopiques. Approche du type percolation et expérimentations, PhD Thesis, Institut National Polytechnique de Toulouse, Toulouse, France.

    Google Scholar 

  • Sahimi, M.: 1993, Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing, Rev. Modern Phys. 65, 1393-1534.

    Google Scholar 

  • Schirmer, R.: 1938, Die Diffusionszahl von Wasserdampf-Luftgemischen und die Verdampfungsgeschwindigkeit, VDI Beiheft Verfahrestechnik 6, 170.

    Google Scholar 

  • Soll, W. E. and Celia, M. A.: 1993, A modified percolation approach to simulating three-fluid capillary pressure-saturation relationships, Adv. Water Res. 16, 107-126.

    Google Scholar 

  • Wilkinson, D. and Willemsen, J. F.: 1983, Invasion percolation: a new form percolation theory, J. Phys. A 16, 3365-3376.

    Google Scholar 

  • Wilson, K. G.: 1971, Renormalization and critical phenomena, Phys. Rev. B 4(9), 174-184.

    Google Scholar 

  • Wise, W. R.: 1992, A new insight on pore structure and permeability, Water Resour. Res. 28, 189-198.

    Google Scholar 

  • Xu, K., Daian, J.-F. and Quenard, D.: 1997, Multiscale structures to describe porous media, Part I: theoretical background and invasion by fluids, Transport in Porous Media 26, 51-73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carmeliet, J., Descamps, F. & Houvenaghel, G. A Multiscale Network Model for Simulating Moisture Transfer Properties of Porous Media. Transport in Porous Media 35, 67–88 (1999). https://doi.org/10.1023/A:1006500716417

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006500716417

Navigation