Advertisement

Journal of Atmospheric Chemistry

, Volume 38, Issue 3, pp 295–315 | Cite as

Observations of Streamers in the Troposphere and Stratosphere Using Ozone Lidar

  • G. Vaughan
  • F. M. O'Connor
  • D. P. Wareing
Article

Abstract

We describe here a DIAL lidar system for atmospheric ozone measurements atAberystwyth, Wales, together witha method for deriving a stratospheric ozone profile from a single laserwavelength. Lidar measurements are used todepict the passage of three mesoscale ozone disturbances in the troposphereand stratosphere. In the troposphere, twosmall fold-like structures are shown beneath and at the edge of streamers ofhigh potential vorticity in ECMWFanalyses. MST radar measurements at the same time show that one of these foldswas actively turbulent, causingmixing of stratospheric and tropospheric air. In the stratosphere, a streamerof low-latitude air drawn into a filamentby a breaking Rossby wave event was observed crossing the lidar site.

ozone lidar tropopause fold streamer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ancellet, G., Pelon, J., Beekmann, M., Papayannis, A., and Megie, G., 1991: Ground-based lidar studies of ozone exchanges between the stratosphere and the troposphere, J. Geophys. Res. 96, 22401-22421.Google Scholar
  2. Appenzeller, C. and Davies, H. C., 1992: Structure of stratospheric intrusions into the troposphere, Nature 358, 570-572.Google Scholar
  3. Appenzeller, C., Davies, H. C., Norton, W. A., 1996: Fragmentation of stratospheric intrusions, J. Geophys. Res. 101, 1435-1456.Google Scholar
  4. Beekmann, M., Ancellet, G., and Megie, G., 1994: Climatology of tropospheric ozone in Southern Europe and its relation to potential vorticity, J. Geophys. Res. 99, 12841-12853.Google Scholar
  5. Cho, J. Y. N., Newell, R. E., Bui, T. P., Browell, E. V., Fenn, M. A., Mahoney, M. J., Gregory, G. L., Sachse, G.W., Vay, S. A., Kucsera, T. L., and Thompson, A. R., 1999: Observations of convective and dynamical instabilities in tropopause folds and their contribution to stratosphere-troposphere exchange, J. Geophys. Res. 104, 21549-21568.Google Scholar
  6. Danielsen, E. F., 1968: Stratospheric-tropospheric exchange based on radioactivity, ozone and potential vorticity, J. Atmos. Sci. 25, 502-518.Google Scholar
  7. Danielsen, E. F., Hipskind, R. S., Gaines, S. E., Sachse, G. W., Gregory, G. L., and Hill, G. F., 1987: Three-dimensional analysis of potential vorticity associated with tropopause folds and observed variations of ozone and carbon monoxide, J. Geophys. Res. 92, 2103-2111.Google Scholar
  8. Eisele, H., Scheel, H. E., Sladovic, R., and Trickl, T., 1999: High-resolution lidar measurements of stratosphere-troposphere exchange, J. Atmos. Sci. 56, 319-330.Google Scholar
  9. Gouget, H., Cammas, J.-P., Marenco, A., Rosset, R., and Jonquieres, I., 1996: Ozone peaks associated with a subtropical tropopause fold and with the trade wind inversion: A case study from the airborne campaign TROPOZ II over the Caribbean in winter, J. Geophys. Res. 101, 25979-25993.Google Scholar
  10. Jäger, H. and Hofmann, D., 1991: Midlatitude lidar backscatter to mass, area and extinction conversion based on in situ aerosol measurements from 1980 to 1987, Appl. Optics 30, 127-138.Google Scholar
  11. Langford, A. O. and Reid, S. J., 1998: Dissipation and mixing of a small-scale stratospheric intrusion in the upper troposphere, J. Geophys. Res. 103, 31265-31276.Google Scholar
  12. Measures, R. M., 1992: Laser Remote Sensing, Krieger Publishing Company.Google Scholar
  13. Newman P. A., Lait, L. R., Schoeberl, M. R., Seablom, M., Coy, L., Rood, R., Swinbank, R., Proffitt, M. H., Loewenstein, M., Podolske, J. R., Elkins, J. W., Webster, C. R., May, R. D., Fahey, D. W., Dutton, G. S., and Chan, K. R., 1996: Measurements of polar vortex air in the midlatitudes, J. Geophys. Res. 101, 12879-12891.Google Scholar
  14. O'Connor, F. M., Vaughan, G., and De Backer, H., 1999: Observations of sub-tropical air in the mid-latitude lower stratosphere, Quart. J. Roy. Met. Soc. 125, 2965-2986.Google Scholar
  15. Papayannis, A., Ancellet, G., Pelon, J., and Mégie, G., 1990: Multiwavelength lidar for ozone measurements in the troposphere and lower stratosphere, Appl. Optics 29, 467-476.Google Scholar
  16. Papayannis, A. D., Porteneuve, J., Balis, D., Zerefos, C., and Galani, E., 1999: Design of a new DIAL system for tropospheric and lower stratospheric ozone monitoring in northern Greece, Phys. Chem. Earth C24, 439-442.Google Scholar
  17. Pepler, S. J., Vaughan, G., and Hooper, D. A., 1998: Detection of turbulence around jetstreams using a VHF radar, Quart. J. Roy. Met. Soc. 124, 447-462.Google Scholar
  18. Peters, D. and Waugh, D. W., 1996: Influence of barotropic shear on the poleward advection of upper-tropospheric air, J. Atmos. Sci. 53, 3013-3031.Google Scholar
  19. Ravetta, F., Ancellet, G., Kowol-Santen, J., Wilson, R., and Nedeljkovic, D., 1999: Ozone, temperature and wind field measurements in a tropopause fold: comparison with a mesoscale model simulation, Mon. Wea. Rev. 127, 2641-2653.Google Scholar
  20. Reid, S. J. and Vaughan, G., 1991: Lamination in ozone profiles in the lower stratosphere, Quart. J. Roy. Meteorol. Soc. 117, 825-844.Google Scholar
  21. Rosen, J. M. and Hofmann, D. J., 1986: Optical modelling of stratospheric aerosols: present status, Appl. Optics 25, 410-418.Google Scholar
  22. Shapiro, M. A., 1978: Further evidence of the mesoscale and turbulent structure of upper jet stream-frontal zone systems, Mon. Wea. Rev. 106, 1101-1111.Google Scholar
  23. Shapiro, M. A., Hampel, T., and Krueger, A. J., 1987: The Arctic tropopause fold, Mon. Wea. Rev. 115, 444-454.Google Scholar
  24. Slater, K., Stevens, A. D., Pearmain, S. A. M., Eccles, D., Hall, A. J., Bennett, R. G. T., France, L., Roberts, G., Olewicz, Z. K., and Thomas, L., 1991: Overview of the MST radar system at Aberystwyth, Proceedings of the Fifth Workshop on Technical and Scientific Aspects of MST Radar, SCOSTEP secretariat, University of Illinois, Urbana, pp. 479-482.Google Scholar
  25. Sunesson, J. A., Apituley, A., and Swart, D. P. J., 1994: Differential absorption LIDAR system for routine monitoring of tropospheric ozone, Appl. Optics 33, 7045-7058.Google Scholar
  26. Uchino, O., Maeda, M., and Hirono, M., 1979: Applications of excimer lasers to laser-radar observations of the upper atmosphere, IEEE J. Quantum Electronics 15, 1094-1107.Google Scholar
  27. Vaughan G., Wareing, D. P., Jones, S. B., Thomas, L., and Larsen, N., 1994a: Lidar measurements of Mt. Pinatubo aerosols at Aberystwyth from August 1991 through March 1992, Geophys. Res. Lett. 21, 1315-1318.Google Scholar
  28. Vaughan, G., Price, J. D., and Howells, A., 1994b: Transport into the troposphere in a tropopause fold, Quart. J. Roy. Met. Soc. 120, 1085-1103.Google Scholar
  29. Vaughan, G. and Timmis, C., 1998: Transport of near-tropopause air into the lower midlatitude stratosphere, Quart. J. Roy. Met. Soc. 124, 1559-1578.Google Scholar
  30. Vaughan, G. and Worthington, R. M., 2000: Break-up of a stratospheric streamer observed by MST radar, Quart. J. Roy. Met. Soc. 126, 1751-1769.Google Scholar
  31. Waugh, D. W., Plumb, R. A., Newman, P. A., Schoeberl, M. R., Lait, L. R., Loewenstein, M., Podolske, J. R., Elkins, J. W., and Chan, K. R., 1994a: Fine-scale, poleward transport of tropical air during AASE-2, Geophys. Res. Lett. 21, 2603-2606.Google Scholar
  32. Waugh, D. W., Plumb, R. A., Atkinson, R. J., Schoeberl, M. R., Lait, L. R., Newman, P. A., Loewenstein, M., Toohey, D. W., Avallone, L. M., Webster, C. R., and May, R. D., 1994b: Transport out of the lower stratospheric Arctic vortex by Rossby wave breaking, J. Geophys. Res. 99, 1071-1088.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • G. Vaughan
    • 1
  • F. M. O'Connor
    • 1
  • D. P. Wareing
    • 1
  1. 1.Department of PhysicsUniversity of WalesAberystwythU.K

Personalised recommendations