Journal of Atmospheric Chemistry

, Volume 38, Issue 3, pp 277–294 | Cite as

On the Role of Lightning NOx in the Formation of Tropospheric Ozone Plumes: A Global Model Perspective

  • Didier Hauglustaine
  • Louisa Emmons
  • Mike Newchurch
  • Guy Brasseur
  • Toshinori Takao
  • Kouji Matsubara
  • James Johnson
  • Brian Ridley
  • Jeff Stith
  • James Dye


A series of ozone transects measured each year from 1987 to 1990 over thewestern Pacific and eastern Indian oceans between mid-November andmid-Decembershows a prominent ozone maximum reaching 50–80 ppbv between 5 and 10 kmin the 20° S–40° S latitude band. This maximum contrasts with ozonemixing ratios lower than20 ppbv measured at the same altitudes in equatorial regions. Analyses witha globalchemical transport model suggest that these elevated ozone values are part ofa large-scale tropospheric ozone plume extending from Africa to the western Pacific acrosstheIndian ocean. These plumes occur several months after the peak in biomassburninginfluence and during a period of high lightning activity in the SouthernHemispheretropical belt. The composition and geographical extent of these plumes aresimilar to theozone layers previously encountered during the biomass burning season in thisregion.Our model results suggest that production of nitrogen oxides from lightningstrokes sustains the NOx (= NO+NO2) levels and the ozonephotochemical productionrequired in the upper troposphere to form these persistent elevated ozonelayers emanating from biomass burning regions.

atmospheric composition ozone lightning emissions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreae, M. O., Atlas, E., Cachier, H., Cofer III, W. R., Harris, G. W., Helas, G., Koppmann, R., Lacaux, J.-P., and Ward, D. E., 1996: Trace gas and aerosol emissions from savanna fires, in J. S. Levine (ed.), Biomass Burning and Global Change, Vol. 1, MIT Press, Mass., pp. 278-295.Google Scholar
  2. Baldy, S., Ancellet, G., Besafi, M., Badr, A., and Lan Sun Luk, D., 1996: Field observations of the vertical distribution of tropospheric ozone at the island of Reunion (southern tropics), J. Geophys. Res. 101, 23835-23849.Google Scholar
  3. Bates, T. S., Huebert, B. J., Gras, J. L., Griffiths, F. B., and Durkee, P. A., 1998: International Global Atmospheric Chemistry (IGAC) Project's first aerosol characterization experiment (ACE-1): overview, J. Geophys. Res. 103, 16297-16318.Google Scholar
  4. Bonsang, B., Kanakidou, M., and Boissard, C., 1994: Contribution of tropical biomass burning to the global budget of hydrocarbons, carbon monoxide and tropospheric ozone, in J. Van Ham, L. J. H. M. Janssen, and R. J. Swart (eds), Non-CO 2 greenhouse gases, Kluwer Academic Publishers, Dordrecht, pp. 261-270.Google Scholar
  5. Brasseur, G. P., Hauglustaine, D. A., and Walters, S., 1996: Chemical compounds in the remote Pacific troposphere: Comparison between MLOPEX measurements and chemical transport model calculations, J. Geophys. Res. 101, 14795-14813.Google Scholar
  6. Brasseur, G. P., Hauglustaine, D. A., Walters, S., Rasch, P. J., Müller, J.-F., Granier, C., and Tie, X. X., 1998: MOZART, a global chemical transport model for ozone and related chemical tracers, 1, Model description, J. Geophys. Res. 103, 28265-28289.Google Scholar
  7. Cahoon, D. R., Stocks, B. J., Levine, J. S., Cofer III, W. R., and O'Neill, K. P., 1992: Seasonal distribution of African savanna fires, Nature 359, 812-815.Google Scholar
  8. Chameides, W. and Walker, J. C. G., 1973: A photochemical theory of tropospheric ozone, J. Geophys. Res. 78, 8751-8760.Google Scholar
  9. Chatfield, R. B., Vastano, J. A., Singh, H. B., and Sachse, G., 1996: A general model of how fire emissions and chemistry produce African/oceanic plumes (O3, CO, PAN, smoke) in TRACE A, J. Geophys. Res. 101, 24279-24306.Google Scholar
  10. Christian, H. J. et al., 1996: The Optical Transient Detector (OTD), in Proceedings of the 10th International Conference on Atmospheric Electricity, Ozaka, Japan, pp. 368-371.Google Scholar
  11. Cros, B., Nganga, D., Minga, A., Fishman, J., and Brackett, V., 1992: Distribution of tropospheric ozone at Brazzaville, Congo, determined from ozonesonde measurements, J. Geophys. Res. 95, 12869-12875.Google Scholar
  12. Crutzen P. J., Heidt, L. E., Krasnec, J. P., Pollock, W. H., and Seiler, W., 1979: Biomass burning as a source of atmospheric gases CO, H2, N2O, NO, CH3Cl, and COS, Nature 282, 253-256.Google Scholar
  13. Crutzen, P. J., Hao, W. M., Liu, M. H., Lobert, J. M., and Scharffe, D., 1989: Emissions of CO2 and other trace gases to the atmosphere from fires in the tropics, in P. Crutzen, J. C. Gérard, and R. Zander (eds), Our Changing Atmosphere, University of Liè ge, Liè ge, pp. 449-471.Google Scholar
  14. Dwyer, E., Grégoire, J.-M., and Malingreau, J-P., 1998: A global analysis of vegetation fires using satellite images: spatial and temporal dynamics, Ambio 27, 175-181.Google Scholar
  15. Emmons, L. K. et al., 1997: Climatologies of NOx and NOy: A comparison of data and models, Atmos. Environ. 31, 1851-1904.Google Scholar
  16. Emmons, L. K., Hauglustaine, D. A., Muller, J.-F., Carroll, M. A., Brasseur, G. P., Brunner, D., Stahelin, J., Thouret, V., and Marenco, A., 2000: Data composites of airborne observations of tropospheric ozone and its precursors, J. Geophys. Res., in press.Google Scholar
  17. Fishman, J., Fakhruzzaman, K., Cross, B., and Nganga, D., 1991: Identification of widespread pollution in the southern hemisphere deduced from satellite analyses, Science 252, 1693-1696.Google Scholar
  18. Forster, P. M. de F. and Shine, K. P., 1997: Radiative forcing and temperature trends from stratospheric ozone changes, J. Geophys. Res. 102, 10841-10855.Google Scholar
  19. Fuelberg, H. E. et al., 1999: A meteorological overview of the Pacific Exploratory Mission (PEM) Tropics period, J. Geophys. Res. 104, 5585-5622.Google Scholar
  20. Gallardo, L. and Cooray, V., 1996: Could cloud-to-cloud discharges be as effective as cloud-to-ground discharges in producing NOx?, Tellus 48B, 641-651.Google Scholar
  21. Granier, C., Hao, W. M., Brasseur, G., and Müller, J.-F., 1996: Land use practices and biomass burning: Impact on the chemical composition of the atmosphere, in J. S. Levine (ed.), Biomass Burning and Global Change, MIT Press, Cambridges, Mass., pp. 140-198.Google Scholar
  22. Hack, J. J., 1994: Parameterization of moist convection in the NCAR community climate model (CCM2), J. Geophys. Res. 99, 5551-5568.Google Scholar
  23. Hao, W. M. and Liu, M.-H., 1994: Spatial distribution of tropical biomass burning in 1980 with 5° x 5° resolution, Global Biogeochem. Cycles 8, 495-503.Google Scholar
  24. Hao, W. M., Ward, D. E., Olbu, G., and Baker, S. P., 1996: Emissions of CO2, CO, and hydrocarbons from fires in diverse African savanna ecosystems, J. Geophys. Res. 101, 23577-23584.Google Scholar
  25. Hauglustaine, D. A. and Granier, C., 1995: Radiative forcing by tropospheric ozone changes due to increased emissions of CH4, CO and NOx, in W.-C. Wang and I. S. A. Isaksen (eds), Atmospheric Ozone as a Climate Gas, Springer-Verlag, Berlin, pp. 189-203.Google Scholar
  26. Hauglustaine, D. A., Brasseur, G. P., Walters, S., Rasch, P. J., Müller, J.-F., Emmons, L. K., and Carroll, M. A., 1998a: MOZART, a global chemical transport model for ozone an and evaluation, J. Geophys. Res. 103, 28291-28335.Google Scholar
  27. Hauglustaine, D. A., Brasseur, G. P., and Walters, S., 1998b: A Three-Dimensional Simulation of Ozone over the North Atlantic Ocean, in R. D. Bojkov and G. Visconti (eds), Atmospheric Ozone, International Ozone Commission, L'Aquila, pp. 735-738.Google Scholar
  28. Hauglustaine, D. A., Brasseur, G. P., and Levine, J. S., 1999: A sensitivity simulation of tropospheric ozone changes due to the 1997 Indonesian fire emissions, Geophys. Res. Lett. 26, 3305-3308.Google Scholar
  29. Holtslag, A. and Boville, B., 1993: Local versus nonlocal boundary-layer diffusion in a global climate model, J. Clim. 6, 1825-1842.Google Scholar
  30. Huntrieser, H., Schlager, H., Feigl, C., and Höller, H., 1998: Transport and production of NOx in electrified thunderstorms: survey of previous studies and new observations at midlatitudes, J. Geophys. Res. 103, 28247-28264.Google Scholar
  31. Jacob, D. J. et al., 1996: Origin of ozone and NOx in the tropical troposphere: A photochemical analysis of aircraft observations over the South Atlantic Basin, J. Geophys. Res. 101, 24235-24250.Google Scholar
  32. Japan Meteorological Agency, 1995: Antarctic Meteorological Data obtained by the Japanese Antarctic Research Expedition, Special Volume VI, Summary of Meteorological Observations at Syowa, Mizuho, and Asuka Stations 1961-1993, Tokyo.Google Scholar
  33. Jonquiè res, I., Marenco, A., Maalej, A., and Rohrer, F., 1998: Study of ozone formation and transatlantic transport from biomass burning emissions over West Africa during the airborne tropospheric ozone campaigns TROPOZ I and TROPOZ II, J. Geophys. Res. 103, 19059-19073.Google Scholar
  34. Kim, J. H. and Newchurch, M. J., 1996: Climatology and trends of tropospheric ozone over the eastern Pacific ocean: the influences of biomass burning and tropospheric dynamics, Geophys. Res. Lett. 23, 3723-3726.Google Scholar
  35. Kim, J. H., and Newchurch, M. J., 1998, Biomass-burning influence on tropospheric ozone over New Guinea and South America, J. Geophys. Res. 101, 1455-1461.Google Scholar
  36. Kley, D., Crutzen, P. J., Smit, H. G. J., Vömel, H., Oltmans, S. J., Grassl, H., and Ramanathan, V., 1996: Observations of near-zero ozone concentrations over the convective Pacific: Effects on air chemistry, Science 274, 230-233.Google Scholar
  37. Kley, D., Smit, H. G. J., Vömel, H., Grassl, H., Ramanathan, V., Crutzen, P. J., Williams, S., Meywerk, J., and Oltmans, S. J., 1997: Tropospheric water-vapour and ozone cross-sections in a zonal plane over the central equatorial Pacific ocean, Q. J. R. Meteorol. Soc. 123, 2009-2040.Google Scholar
  38. Lacis, A. A., Wuebbles, D. J., and Logan, J. A., 1990: Radiative forcing of climate by changes of vertical distribution of ozone, J. Geophys. Res. 95, 9971-9981.Google Scholar
  39. Lamarque, J.-F., Brasseur, G. P., Hess, P. G., and Müller, J.-F., 1996: Three-dimensional study of the relative contributions of the different nitrogen sources in the troposphere, J. Geophys. Res. 101, 22,955-22,968.Google Scholar
  40. Law, K. S., Plantevin, P.-H., Thouret, V., Marenco, A., Asman, W. A. H., Lawrence, M., Crutzen, P. J., Müller, J.-F., Hauglustaine, D. A., and Kanakidou, M., 2000: Comparison between global chemistry transport model results and measurements of ozone and water vapor Airbus in-service aircraft (MOZAIC) data, J. Geophys. Res. 105, 1503-1525.Google Scholar
  41. Lawrence, M. G., Chameides, W. L., Kasibhatla, P. S., Levy II, H., and Moxim, W., 1995: Lightning and atmospheric chemistry: the rate of atmospheric NO production, in H. Volland (ed.), Atmospheric Electrodynamics, CRC Press, pp. 189-202.Google Scholar
  42. Lee, D. S. et al., 1997: Estimations of global NOx emissions and their uncertainties, Atmos. Environ. 31, 1735-1750.Google Scholar
  43. Levy II, H., 1971: Normal atmosphere: Large radical and formaldehyde concentrations predicted, Science 173, 141-143.Google Scholar
  44. Levy II, H., Moxim, W. J., and Kasibhatla, P. S., 1996: A global three-dimensional time-dependent lightning source of tropospheric NOx, J. Geophys. Res. 101, 22911-22922.Google Scholar
  45. Logan, J. A., 1994: Trends in the vertical distribution of ozone: an analysis of ozonesonde data, J. Geophys. Res. 99, 25553-25585.Google Scholar
  46. Logan, J. A. and Kirchhoff, V. W. J. H., 1986: Seasonal variations of tropospheric ozone at Natal, Brazil, J. Geophys. Res. 91, 7875-7881.Google Scholar
  47. Martin, R. V., Jacob, D. J., Logan, J., Ziemke, J. M., and Washington, R., 2000: Detection of a lightning influence on tropical tropospheric ozone, Geophys. Res. Lett. 27, 1639-1642.Google Scholar
  48. Matsubara, K., Doi, M., Uekubo, T., Okada, K., Aoki, S., and Kawaguchi, S., 1991: Results of ozone observation from the equatorial region to Antarctica in 1987, in Proc. NIPR Symposium Polar Meteorol. Glaciol. 4, pp. 1-11.Google Scholar
  49. Müller, J.-F., 1992: Geographical distribution and seasonal variation of surface emissions and deposition velocities of atmospheric trace gases, J. Geophys. Res. 97, 3787-3804.Google Scholar
  50. Orville, R. E. and Henderson, R. W., 1986: Global distribution of midnight lightning: September 1977 to August 1978, Mon. Weather. Rev. 114, 2640-2653.Google Scholar
  51. Penner et al., 1998: An evaluation of upper tropospheric NOx with two models, J. Geophys. Res. 103, 22097-22113.Google Scholar
  52. Pickering, K., Wang, Y., Tao, W.-K., Price, C., and Müller, J.-F., 1998: Vertical distributions of lightning NOx for use in regional and global chemical transport models, J. Geophys. Res. 103, 31203-31216.Google Scholar
  53. Portmann, R. W., Solomon, S., Fishman, J., Olson, J. R., Kiehl, J. T., and Briegleb, B., 1997: Radiative forcing of the Earth's climate system due to tropical tropospheric ozone production, J. Geophys. Res. 102, 9409-9417.Google Scholar
  54. Price, C. and Rind, D.: 1992: A simple lightning parameterization for calculating global lightning distributions, J. Geophys. Res. 97, 9919-9933.Google Scholar
  55. Price, C. and Rind, D., 1992: NOx from lightning 1. Global distribution based on lightning physics, J. Geophys. Res. 97, 9919-5941.Google Scholar
  56. Price, C., Penner, J., and Prather, M., 1997: NOx from lightning 2. Constraints from the global atmospheric electric circuit, J. Geophys. Res. 102, 5943-5951.Google Scholar
  57. Ridley, B. A., Walega, J. G., Dye, J. E., and Grahek, F. E., 1994: Distributions of NO, NOx, NOy, and O3 to 12 km altitude during the summer monsoon season over New Mexico, J. Geophys. Res. 99, 25519-25534.Google Scholar
  58. Roelofs, G.-J. and Lelieveld, J., 1997: Model study of the influence of cross-tropopause O3 transports on tropospheric O3 levels, Tellus 49B, 38-55.Google Scholar
  59. Roelofs, G.-J., Lelieveld, J., Smit, H. G. J., and Kley, D., 1997: Ozone production and transports in the tropical Atlantic region during the biomass burning season, J. Geophys. Res. 102, 10637-10651.Google Scholar
  60. Schultz, M. et al., 1999: On the origin of tropospheric ozone and NOx over the tropical South Pacific, J. Geophys. Res. 104, 5829-5843.Google Scholar
  61. Seiler, W. and Crutzen, P. J., 1980: Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning, Clim. Change 2, 207-247.Google Scholar
  62. Smyth S. B. et al., 1996: Factors influencing the upper free tropospheric distribution of reactive nitrogen over the south Atlantic during the TRACE A experiment, J. Geophys. Res. 101, 24165, 24186.Google Scholar
  63. Stith, J., Dye, J., Ridley, B., Laroche, P., Defer, E., Baumann, K., Hübler, G., Zerr, R., and Venticinque, M., 1999: NO signatures from lightning flashes, J. Geophys. Res. 104, 16081-16089.Google Scholar
  64. Thompson, A. M. et al., 1996: Where did tropospheric ozone over southern Africa and the tropical Atlantic come from in October 1992? Insights from TOMS, GTE TRACE A, and SAFARI 1992, J. Geophys. Res. 101, 24251-24278.Google Scholar
  65. Turman, B. N. and Edgar, B. C., 1982: Global lightning distribution at dawn and dusk, J. Geophys. Res. 87, 1191-1206.Google Scholar
  66. Wang, Y., DeSilva, A. W., Goldenbaum, G. C., and Dickerson, R. R., 1998: Nitric oxide production by simulated lightning: dependence on current, energy, and pressure, J. Geophys. Res. 103, 19149-19159.Google Scholar
  67. Williamson, D. L. and Rasch, P. J., 1989: Two-dimensional semi-Lagrangian transport with shape preserving interpolation, Mon. Weather Rev. 117, 102-129.Google Scholar
  68. Zhang, R., Sanger, N. T., Orville, R. E., Tie, X. X., Randel, W., and Williams, E. R., 2000: Enhanced NOx by lightning in the upper troposphere and lower stratosphere inferred from the UARS global NO2 measurements, Geophys. Res. Lett. 27, 685-688.Google Scholar
  69. Ziemke, J. R., Chandra, S., and Bhartia, P. K., 1998: Two new methods for deriving tropospheric column ozone from TOMS measurements: The assimilated UARSMLS/HALOE and convective-cloud differential techniques, J. Geophys. Res. 103, 22115-22127.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Didier Hauglustaine
    • 1
  • Louisa Emmons
    • 2
  • Mike Newchurch
    • 3
  • Guy Brasseur
    • 4
  • Toshinori Takao
    • 5
  • Kouji Matsubara
    • 5
  • James Johnson
    • 6
  • Brian Ridley
    • 2
  • Jeff Stith
    • 7
  • James Dye
    • 8
  1. 1.Service d'Aéronomie du Centre National de la Recherche ScientifiqueParisFrance
  2. 2.Atmospheric Chemistry DivisionNCARBoulderU.S.A
  3. 3.Department of Atmospheric ScienceUniversity of Alabama in HuntsvilleU.S.A
  4. 4.Max Planck Institute for MeteorologyHamburgGermany
  5. 5.Japan Meteorological AgencyJapan
  6. 6.NOAA/PMELSeattleU.S.A
  7. 7.University of North DakotaGrand ForksU.S.A
  8. 8.Mesoscale and Microscale MeteorologyNCARBoulderU.S.A

Personalised recommendations