Skip to main content
Log in

Fast-J: Accurate Simulation of In- and Below-Cloud Photolysis in Tropospheric Chemical Models

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Photolysis rates in the troposphere are greatly affected by the presenceof cloud and aerosol layers. Yet, the spatial variability of theselayers along with the difficulty of multiple-scattering calculationsfor large particles makes their inclusion in 3-D chemical transportmodels computationally very expensive.This study presents a flexible and accurate photolysis scheme, Fast-J,which calculates photolysis rates in the presence of an arbitrary mix ofcloud and aerosol layers. The algorithm is sufficiently fast to allow thescheme to be incorporated into 3-D global chemical transport models andhave photolysis rates updated hourly. It enables tropospheric chemistrysimulations to include directly the physical properties of the scatteringand absorbing particles in the column, including the full, untruncatedscattering phase function and the total, uncorrected optical depth.The Fast-J scheme is compared with earlier methods that have been usedin 3-D models to parameterize the effects of clouds on photolysis rates.The impact of Fast-J on tropospheric ozone chemistry is demonstratedwith the UCI tropospheric CTM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, D. E., Demajistre, R., Lloyd, S. A., and Swaminathan, P. K., 1995: Impact of aerosols and clouds on the troposphere and stratosphere radiation-field with application to twilight photochemistry at 20 km, J. Geophys. Res. 100, 7135–7145.

    Google Scholar 

  • Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Kerr, J. A., Rossi, M. J., and Troe, J., 1997: Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry, Supplement V-IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry, J. Phys. Chem. Ref. Data 26, 521–1011.

    Google Scholar 

  • Auer, L., 1967: Improved boundary conditions for the Feautrier method, Astrophys. J. 150, 53–55.

    Google Scholar 

  • Berntsen, T. K. and Isaksen, I. S. A., 1997: A global three-dimensional chemical transport model for the troposphere. 1. Model description and CO and ozone results, J. Geophys. Res. 102, 21239–21280.

    Google Scholar 

  • Brasseur, G. P., Hauglustaine, D. A., Walters, S., Rasch, P. J., Muller, J.-F., Granier, C., and Tie, X. X., 1998: MOZART, a global chemical tracer model for ozone and related chemical tracers. 1. Model description, J. Geophys. Res. 103, 28265–28289.

    Google Scholar 

  • Brock C. A., Jonsson, H. H., Wilson, J. C., Dye, J. E., Baumgardner, D., Borrmann, S., Pitts, M. C., Osborn, M., Decoursey, R. J., and Woods, D. C., 1993: Relationships between optical extinction, backscatter and aerosol surface and volume in the stratosphere following the eruption of Mt Pinatubo, Geophys. Res. Lett. 20, 2555–2558.

    Google Scholar 

  • Boucher, O., Schwartz, S. E., Ackerman, T. P., Anderson, T. L., Bergstrom, B., Bonnel, B., Chylek, P., Dahlback, A., Fouquart, Y., Fu, Q., Halthore, R. N., Haywood, J. M., Iversen, T., Kato, S., Kinne, S., Kirkevag, A., Knapp, K. R., Lacis, A., Laszlo, I., Mishchenko, M. I., Nemesure, S., Ramaswamy, V., Roberts, D. L., Russell, P., Schlesinger, M. E., Stephens, G. L., Wagener, R., Wang, M., Wong, J., and Yang, F., 1998: Intercomparison of models representing direct shortwave radiative forcing by sulphate aerosols, J. Geophys. Res. 103, 16979–16998.

    Google Scholar 

  • Cameron-Smith, P. J., 2000 (this issue): Incorporation of non-linear cross-section parameterizations into a fast photolysis computation code (Fast-J), J. Atmos. Chem. 37, 283–297.

    Google Scholar 

  • Chandrasekhar, S., 1960: Radiative Transfer, Dover, New York, p. 393.

    Google Scholar 

  • Chang, J. S., Brost, R. A., Isaksen, I. S. A., Madronich, S., Middleton, P., Stockwell, W. R., and Walcek, C. J., 1987: A three-dimensional Eulerian acid deposition model: Physical concepts and formulation, J. Geophys. Res. 92, 14681–14700.

    Google Scholar 

  • Cochran, W. D. and Trafton, L. M., 1978: Raman scattering in the atmospheres of the major planets, Astrophys. J. 219, 756–762.

    Google Scholar 

  • Dave J. V. and Armstrong, B. H., 1970: Computation of high-order associated Legendre Polynomials, J.Q.S.R.T. 10, 557–562.

    Google Scholar 

  • Deirmendjian, D., 1969: Electromagnetic Scattering on Spherical Polydispersions, American Elsevier, New York, p. 287.

    Google Scholar 

  • DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J., 1997: Chemical kinetics and photochemical data for use in stratospheric modeling, JPL Publication, 97–4, Jet Propulsion Lab., Pasadena.

    Google Scholar 

  • Feautrier, P., 1964: Comptes Rendues 258, 3189–3199.

    Google Scholar 

  • Goody, R. M. and Yung, Y. L., 1989: Atmospheric Radiation, Oxford University Press, New York, p. 519.

    Google Scholar 

  • Hansen, J. E. and Travis, L., 1974: Light scattering in planetary atmospheres, Space Sci. Rev. 16, 527–610.

    Google Scholar 

  • Henyey, L. C. and Greenstein, J. L., 1941: Diffuse radiation in the galaxy, Astrophys. J. 93, 70–83.

    Google Scholar 

  • Hough, A. M., 1988: The calculation of photolysis rates for use in global tropospheric modelling studies, AERE Report R-13259, H.M. Stationery Office, London.

    Google Scholar 

  • Isaksen, I. S. A., Midtbo, K. H., Sunde, J., and Crutzen, P. J., 1977: A simplified method to include molecular scattering and reflection in calculations of photon fluxes and photodissociation rates, Geophys. Norv. 31, 11–26.

    Google Scholar 

  • Jacob, D., Gottlieb, E., and Prather, M. J., 1989: Chemistry of a polluted cloudy boundary layer, J. Geophys. Res. 94, 12975–13002.

    Google Scholar 

  • Joseph, J. H., Wiscombe, W. J., and Weinman, J. A., 1976: The delta-Eddington approximation for radiative flux transfer, J. Atmos. Sci. 33, 2452–2459.

    Google Scholar 

  • Kraus, A. B., Rohrer, F., Grobler, E. S., and Ehhalt, D. H., 1996: The global tropospheric distribution of NOx estimated by the three-dimensional chemical tracer model, J. Geophys. Res. 101, 18587–18604.

    Google Scholar 

  • Kylling, A., Stamnes, K., and Tsay, S. C., 1995: A reliable and efficient two-stream algorithm for spherical radiative transfer: Documentation of accuracy in realistic layered media, J. Atmos. Chem. 21, 115–150.

    Google Scholar 

  • Landgraf, J. and Crutzen, P. J., 1998: An efficient method for online calculations of photolysis and heating rates, J. Atmos. Sci. 55, 863–878.

    Google Scholar 

  • Liao, H., Yung, Y. L., and Seinfeld, J. H., 1999: Effects of aerosols on tropospheric photolysis rates in clear and cloudy atmospheres, J. Geophys. Res. 104, 23697–23707.

    Google Scholar 

  • Liousse, C., Penner, J. E., Chuang, C., Walton J. J., Eddleman, H., and Cachier, H., 1996: A global three-dimensional model study of carbonaceous aerosols, J. Geophys. Res. 101, 19411–19432.

    Google Scholar 

  • Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B., 1981: Tropospheric chemistry: A global perspective, J. Geophys. Res. 86, 7210–7254.

    Google Scholar 

  • Madronich, S., 1987: Photodissociation in the atmosphere: 1. Actinic flux and the effects of ground reflections and clouds, J. Geophys. Res. 92, 9740–9752.

    Google Scholar 

  • Michelangeli, D. V., Allen, M., Yung, Y. L., Shia, R. L., Crisp, D., Eluszkiewicz, J., 1992: Enhancement of atmospheric radiation by an aerosol layer, J. Geophys. Res. 97, 865–874.

    Google Scholar 

  • Mishchenko, M. I., Rossow, W. B., Macke, A., and Lacis, A. A., 1996: Sensitivity of cirrus cloud albedo, bidirectional reflectance and optical thickness retrieval accuracy to ice particle shape, J. Geophys. Res. 101, 16973–16985.

    Google Scholar 

  • Müller, J. F. and Brasseur, G., 1995: IMAGES: A three-dimensional chemical transport model of the global troposphere, J. Geophys. Res. 100, 16445–16490.

    Google Scholar 

  • Olsen, J., Prather, M., Berntsen, T., Carmichael, G., Chatfield, R., Connell, P., Derwent, R., Horowitz, L., Jin, S., Kanakidou, M., Kasibhatla, P., Kotamarthi, R., Kuhn, M., Law, K., Penner, J., Perliski, L., Sillman, S., Stordal, F., Thompson, A., and Wild, O., 1997: Results from the Intergovernmental Panel on Climate Change photochemical model intercomparison (PhotoComp), J. Geophys. Res. 102, 5979–5991.

    Google Scholar 

  • Penner, J. E., Dickinson, R. E., and O'Neill, C. A., 1992: Effects of aerosol from biomass burning on the global radiation budget, Science 256, 1432–1433.

    Google Scholar 

  • Prather, M. J., 1974: Solution of the inhomogeneous Rayleigh scattering atmosphere, Astrophys.J. 192, 787–792.

    Google Scholar 

  • Prather, M., McElroy, M., Wofsy, S., Russell, G., and Rind, D., 1987: Chemistry of the global troposphere: Fluorocarbons as tracers of air motion, J. Geophys. Res. 92, 6579–6613.

    Google Scholar 

  • Prather, M. J. and Remsberg, E. E. (eds), 1993: The atmospheric effects of stratospheric aircraft: Report of the 1992 stratospheric models and measurements workshop, NASA Ref. Publ., 1292, p. 672.

  • Quinn, P. K., Kapustin, V. N., Bates, T. S., and Covert, D. S., 1996: Chemical and optical properties of marine boundary layer aerosol particles of the mid-Pacific in relation to sources and meteorological transport, J. Geophys. Res. 101, 6931–6951.

    Google Scholar 

  • Rind, D. and Lerner, J., 1996: Use of on-line tracers as a diagnostic tool in general circulation model development: 1. Horizontal and vertical transport in the troposphere, J. Geophys. Res. 101, 12667–12683.

    Google Scholar 

  • Roelofs, G. J. and Lelieveld, J., 1995: Distribution and budget of O3 in the troposphere calculated with a chemistry general circulation model, J. Geophys. Res. 100, 20983–20998.

    Google Scholar 

  • Rossow, W. B. and Schiffer, R. A., 1991: ISCCP cloud data products, Bull. Amer. Meteor. Soc. 72, 2–20.

    Google Scholar 

  • Schimel, D. et al., 1996: Radiative forcing of climate, in J. T. Houghton et al. (eds), Climate Change, 1995-The Science of Climate Change (Chapter 2), Cambridge University Press, New York, pp. 65–131.

    Google Scholar 

  • Spivakovsky, C. M., Logan, J. A., Montzka, S. A., Balkanski, Y. J., Foreman-Fowler, M., Jones, D. B. A., Horowitz, L. W., Fusco, A. C., Brenninkmeijer, C. A. M., Prather, M. J., Wofsy, S. C., and McElroy, M. B., 2000: Three-dimensional climatological distribution of tropospheric OH: Update and evaluation, J. Geophys. Res. 105, 8931–8980.

    Google Scholar 

  • Stamnes, K., Tsay, S. C., Wiscombe, W., and Jayaweera, K., 1988: Numerically stable algorithm for discrete-ordinate method radiative transfer in multiple scattering and emitting layered media, Applied Optics 27 (12), 2502–2509.

    Google Scholar 

  • Tegen, I. and Fung, I., 1995: Contribution to the atmospheric mineral dust load from land surface modification, J. Geophys. Res. 100, 18707–18726.

    Google Scholar 

  • Thekeakara, M. P., 1974: Extra-terrestrial solar spectrum, 3000–6100 A at 1 A intervals, Appl. Opt. 13, 518–522.

    Google Scholar 

  • van de Hulst, H. C., 1981: Light Scattering by Small Particles, Dover, New York, p. 471.

    Google Scholar 

  • Wild, O. and Prather, M. J., 2000: Excitation of the primary tropospheric chemical mode in a global 3-D model, J. Geophys. Res., accepted.

  • Wilson J. C., Jonsson, H. H., Brock, C. A., Toohey, D. W., Avallone, L. M., Baumgardner, D., Dye, J. E., Poole, L. R., Woods, D. C., Decoursey, R. J., Osborn, M., Pitts, M. C., Kelly, K. K., Chan, K. R., Ferry, G. V., Loewenstein, M., Podolske, J. R., and Weaver, A., 1993: In-situ observations of aerosol and chlorine monoxide after the 1991 eruption of Mount Pinatubo–effect of reactions on sulfate aerosol, Science 261, 1140–1143.

    Google Scholar 

  • Wiscombe, W. J., 1977: The delta-M method: Rapid yet accurate radiative flux calculations for strongly asymmetric phase functions, J. Atmos. Sci. 34, 1408–1422.

    Google Scholar 

  • World Meteorological Organisation, 1986: Atmospheric Ozone 1985: Assessment of our understanding of the processes controlling its present distribution and change, Global Ozone Research and Monitoring Project, Report 16.

  • Zeng, J., Madronich, S., and Stamnes, K., 1996: A note on the use of the two-stream delta-scaling approximation for calculating atmospheric photolysis rate coefficients, J. Geophys. Res. 101, 14525–14530.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wild, O., Zhu, X. & Prather, M.J. Fast-J: Accurate Simulation of In- and Below-Cloud Photolysis in Tropospheric Chemical Models. Journal of Atmospheric Chemistry 37, 245–282 (2000). https://doi.org/10.1023/A:1006415919030

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006415919030

Navigation