Skip to main content
Log in

The Reactivity of Biogenic Monoterpenes towards OH· and SO4-· Radicals in De-Oxygenated Acidic Solution

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The reactivity of some selected biogenic monoterpenecompounds towards important aqueous phase free-radicaloxidants, namely OH· and SO4 -·, have beeninvestigated using the complementary experimentaltechniques of pulse radiolysis and laser flashphotolysis (λ = 248 nm). Rate constants forthe reactions of the OH· radical with cis-verbenol andmethacrolein have been determined to be (6.8 ± 0.5) ×109 dm3 mol-1 s-1 and (8.0± 0.7) × 109 dm3 mol-1s-1,respectively (T = 20 °C, pH 4.0, Ionic strength∼ 0 mol dm-3). Rate constants and activationenergies for the reactions of the SO4 -·radical have been measured for the following compounds(T = 20 °C, pH 4.0, Ionic strength = 0.03 moldm-3): α-pinene (k = (3.1 ± 0.1) ×109 dm3 mol-1 s-1;E act. =(8.9 ± 1.3) kJ mol-1), α-terpineol(k = (4.1 ± 0.1) × 109 dm3mol-1s-1; E act. = (13.4 ± 0.6) kJmol-1), cis-verbenol (k = (3.2 ± 0.2) ×109 dm3 mol-1 s-1;E act. =(10.0 ± 0.7) kJ mol-1), verbenone (k = (1.6± 0.1) × 109 dm3 mol-1s-1;E act. = (6.1 ± 0.7) kJ mol-1), myrtenal(k = (1.85 ± 0.1) × 109 dm3mol-1s-1; E act. = (7.5 ± 0.7) kJmol-1)and methacrolein (k = (1.18 ± 0.1) × 109dm3 mol-1 s-1). In most instances theabsorption spectra of the intermediate products formedby these reactions have been measured which, inconjunction with strategic conductiometric studies,have been used to suggest plausible mechanisms for theoxidation in acidic de-oxygenated solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnoldi, C., Citterio, A., and Minisci, F., 1983: Electron-transfer processes: Metal salt catalysed oxidation of olefins by peroxydisulphate, J. Chem. Soc. Perkin Trans. II, 531–541.

    Google Scholar 

  • Brede, O. and Kluge, T., 1997: Private communication.

  • Buxton, G. V., 1987: Radiation chemistry of the liquid state: (1) water and homogeneous aqueous solutions, in: Farhataziz and M. A. J. Rodgers (eds), Radiation Chemistry, Principles and Applications, VCH Publishing, New York, pp. 321–349.

    Google Scholar 

  • Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross A. B., 1988: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH·/O-.) in aqueous solution, J. Phys. Chem. Ref. Data 17, 513–886.

    Google Scholar 

  • Buxton, G. V. and Stuart, C. R., 1995: Re-evaluation of the thiocyanate dosimeter for pulse radiolysis,Chem. Soc., Faraday Trans. 1, 91, 279–281.

    Google Scholar 

  • Buxton, G. V., McGowan, S., Salmon, G. A., Williams, J. E., and Wood, N. D., 1996: A study of the spectra and reactivity of oxysulfur-radical anions involved in the chain oxidation of S(IV): A pulse and γ-radiolysis study, Atmos. Environ. 30 (14), 2483–2493.

    Google Scholar 

  • Buxton, G. V., Bydder, M., and Salmon, G. A., 1998: Reactivity of chlorine atoms in aqueous solution. Part 1. The equilibrium Cl + Cl- ⇌ Cl -2 ·, J. Chem. Soc., Faraday Trans. 94 (5), 653–657.

    Google Scholar 

  • Buxton, G. V., Bydder, M., and Salmon, G. A., 1999: Reactivity of chlorine atoms in aqueous solution. Part 2. The equilibrium SO -4 · + Cl- ⇌ SO 2-4 + Cl, Phys. Chem. Chem. Phys. 1, 269–273.

    Google Scholar 

  • Curtis, A. R. and Sweetenham, W. P., 1987: FACSIMILE/CHECKMAT User's Manual, UKAEA, AERER 12805.

  • Davies, M. J. and Gilbert, B. C., 1984: Electron Spin Resonance studies. Part 68. Addition vs. overall one-electron abstraction in the oxidation of alkenes and dienes by SO -4 ·, Cl -2 · and OH· in acidic aqueous solution, J. Chem. Soc. Perkin Trans. II, 1809–1815.

    Google Scholar 

  • Forbes, W. F. and Shilton, R., 1959: Electronic spectra and molecular dimensions. III. Steric effects in methyl-substituted α, β-unsaturated aldehydes, J. Chem. Soc., 786–790.

  • Gordon, S., Hart, E. J., Matheson, M. S., Rabani, J., and Thomas, J. K., 1963: Reactions of the hydrated electron, Discuss. Faraday Soc. 36, 193.

    Google Scholar 

  • Green, J., 1975: Redox reactions of copper ions with organic radicals, PhD Thesis, University of Leeds.

  • Grimshaw, J., Langan, J. R., and Salmon, G. A., 1994: Dissociative electron transfer between arene radical anions and halogenoalkanes: A pulse radiolysis study,J. Chem. Soc., Faraday Trans. 90 (1), 75–81.

    Google Scholar 

  • Grosjean, D., Williams, E. L., Grosjean, E., Andino, J. M., and Seinfield, J. H., 1993: Atmospheric oxidation of biogenic hydrocarbons — reactions of ozone with β-pinene, d-limonene and transcaryophyllene, Environ. Sci. Tech. 27 (13), 2754–2758.

    Google Scholar 

  • Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lendall, M., McKay, W. A., Pierce, T., Scholes, V., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, R., 1995: A global model of natural volatile organic compound emissions, J. Geophys. Res. 100 (DS), 8873–8892.

    Google Scholar 

  • Hudson, A., Waterman, D., and Alberti, A., 1995: Free radicals from biogenic volatile organic compounds (VOCs): an electron spin resonance investigation, J. Chem. Soc. Perkin Trans. II, 2091–2093.

    Google Scholar 

  • Janata, E., Lilie, J., and Martin, M., 1994: Instrumentation of kinetic spectroscopy-II. An apparatus for a.c-conductivity measurements in laser flash photolysis and pulse radiolysis experiments, Radiat. Phys. Chem. 43 (4), 365–370.

    Google Scholar 

  • Koltzenburg, G., Bastain, E., and Steenken, S., 1988: Kinetics and stereochemistry of the SO -4 · induced hydroxylation of cyclohexenes in aqueous solution, Angew. Chem. Int. Ed. Engl. 27 (8), 1066–1067.

    Google Scholar 

  • Malone, T., 1997: Reactions of some free-radicals relevant to atmospheric chemistry, PhD Thesis, University of Leeds.

  • Michael, B. D. and Hart, E. J., 1970: The rate constants of hydrated electron, hydrogen atom, and hydroxyl radical reactions with benzene, 1,3-cyclohexadiene, 1,4-cyclohexadiene and cyclohexene, J. Phys. Chem. 74 (15), 2878–2884.

    Google Scholar 

  • Moore, R. N. and Fischer, G. S., 1956: The effect of strained rings on ultraviolet absorption spectra, J. Chem. Soc., 4362–4364.

  • Neta, P. and Huie, R., 1988: Rate constants for reactions of inorganic radicals in aqueous solution,J. Phys. Chem. Ref. Data 17 (3), 1027–1284.

    Google Scholar 

  • Schuler, R. H., Hartzell, A. L., and Behar, B., 1981: Track effects in radiation chemistry. Concentration dependence for the scavenging of OH by ferrocyanide in N2O-saturated solution, J. Phys. Chem., 192–198.

  • Simic, M., Neta, P., and Hayon, E., 1973: Reactions of hydroxyl radicals with unsaturated aliphatic alcohols in aqueous solution, J. Phys. Chem. 77 (22), 2662–2667.

    Google Scholar 

  • Söylemez, T. and Schuler, R. H., 1974: Radiolysis of aqueous solutions of cyclopentane and cyclopentene, J. Phys. Chem. 78 (11), 1052–1062.

    Google Scholar 

  • Steenken, S., 1979: Oxidation of phenolates and phenylenediamines by 2-alkanonyl radicals produced from 1,2-dihyroxy and 1-hydroxy-2-alkoxyalkyl radicals, J. Phys. Chem. 83 (5), 595–599.

    Google Scholar 

  • Tanner, D. D., Zhang, L., and Kandanarachchi, P., 1996: Absolute rate constants for the addition of atomic hydrogen to monosubstituted and trisubstituted olefins, J. Phys. Chem. 100, 11319–11324.

    Google Scholar 

  • Turner, D. N., 1959: Spectrophotometry in the far-ultraviolet region. Part II. Absorption spectra of steriods and triterpeniods, J. Chem. Soc., 30–33.

  • Veltwisch, D., Janata, E., and Asmus, K-D., 1980: Primary processes in the reaction of OH-radicals with sulphoxides, J. Chem. Soc., Perkin Trans. II, 146–153.

    Google Scholar 

  • Vinckier, C., Compernolle, F., Saleh, A. M., VanHoof, N., and VanHees, I., 1998: Product yields of the α-pinene reaction with hydroxyl radicals and the implication on the global emission of trace compounds in the atmosphere, Fren. Environ. Bull. 7 (5–6), 361–368.

    Google Scholar 

  • Von Sonntag, C., 1987: The Chemical Basis of Radiation Biology, Taylor and Francis, London, pp. 57–93.

    Google Scholar 

  • Wängberg, I., Barnes, I., and Becker, K. H., 1997: Product and mechanistic study of the reaction of NO3 · radicals with α-pinene, Environ. Sci. Technol. 31, 2130–2135.

    Google Scholar 

  • Weidenhamer, J. D., Macias, F. A., Fischer, N. H., and Williamson, G. B., 1993: Just how insoluble are monoterpenes?, J. Chem. Ecol. 19 (8), 1799–1807.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buxton, G.V., Salmon, G.A. & Williams, J.E. The Reactivity of Biogenic Monoterpenes towards OH· and SO4-· Radicals in De-Oxygenated Acidic Solution. Journal of Atmospheric Chemistry 36, 111–134 (2000). https://doi.org/10.1023/A:1006340727148

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006340727148

Navigation