Skip to main content
Log in

Minor Constituent Concentrations Measured from a High Altitude Aircraft Using High Resolution Far-Infrared Fourier Transform Spectroscopy

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Far-infrared emission spectroscopy has beendemonstrated to be a valuable method for remotesensing of trace species in the stratosphere, with theability to simultaneously detect a number of keychemical species. SAFIRE-A is a new far-infraredFourier Transform (FT) spectrometer which has beenspecifically designed to operate on board of a highaltitude aircraft in the lower stratosphere and uppertroposphere regions where relatively few remotesensing measurements have been made. Using newtechnology, the sensitivity of the FT spectrometermethod has been substantially improved for the longwavelength region. Results are reported formeasurements of O3, HNO3 and N2O at 17and 19 km using a detection window near 23 cm-1.Geographical and altitude variability of the volumemixing ratio of these constituents and their relativecorrelation are discussed. Ozone measurements agreewell with in situ measurements, except in regions ofstrong stirring and mixing associated with deformationof the northern vortex edge. Whilst SAFIREmeasurements of trace gases do not capture all of thelocal variability seen by rapid in-situ techniques,they can indicate horizontal variability close to, butnot intercepted by, the aircraft's flight path. Apossible detection of ClO at the low background levelsexpected outside the polar vortex is also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bregman A. et al., 1995: Aircraft measurements of O3, HNO3 and N2O in the winter Arctic lower stratosphere during the Stratopshere-Troposphere Experiment by Aircraft Measurements (STREAM) 1, J. Geophys. Res. 100 (D6), 11,245-11,260.

    Google Scholar 

  • Bodeker, G. E. et al., 1997: Nitric acid profile measurements by ILAS during the Arctic winter of 1996/1997, Proc. Fourth European Symposium, Schliersee, Germany, p. 415.

  • Brasseur, G. and Solomon, S., 1986: Aeronomy of the Middle Atmosphere, 2nd edn, D. Reidel, Norwell, Mass.

    Google Scholar 

  • Brühl C. et al., 1996: HALOE ozone channel validation, J. Geophys. Res. 101 (D6), 10,217-10,240.

    Google Scholar 

  • Carli B., Mencaraglia, F., and Bonetti, A., 1984: Submillimiter high-resolution FT spectrometer for atmospheric studies, Appl. Opt. 23, 2594-2603.

    Google Scholar 

  • Carli B. et al., 1988: Submillimiter measurement of stratospheric chlorine monoxide, J. Geophys. Res. 93, 7063-7068.

    Google Scholar 

  • Carli B. et al., 1989: The mixing ratio of stratospheric hydroxyl radical from far-infrared emission measurements, J. Geophys. Res. 94, 11049-11058.

    Google Scholar 

  • Carli B. et al., 1999: SAFIRE-A-Spectroscopy of the atmosphere using far-infrared emission/airborne, J. Atmos. Oceanic Technol. Special issue on Air'borne Polar Experiment’ (forthcoming).

  • Carlotti, M., 1988: Global fit approach to to the analysis of limb-scanning atmospheric measurements, Appl. Opt. 27, 3250-3254.

    Google Scholar 

  • Carlotti, M., Barbis, A. and Carli, B., 1989: Stratospheric ozone vertical distribution from far-infrared balloon spectra and statistical analysis of the errors, J. Geophys. Res. 94, 16,365-16,372.

    Google Scholar 

  • Carlotti M. et al., 1995: Measurement of stratospheric HBr using high resolution far infrared spectroscopy, Geophys. Res. Lett. 22, 3207-3210.

    Google Scholar 

  • Chipperfiled, M. P. et al., 1996: Analisys of UARS data in the southern polar vortex in September 1992 using a chemical transport model, J. Geophys. Res. 101, 18,861-18,881.

    Google Scholar 

  • De Valk, J. P. J. M. M. et al., 1997: Airborne heterodyne measurements of stratospheric ClO, HCl, O3 and N2O during SESAME 1 over northern Europe, J. Geophys. Res. 102 (D1), 1391-1398.

    Google Scholar 

  • Dinelli, B. M., Carli, B., and Carlotti, M., 1991: Measurement of stratospheric distribution of H2 16O, H2 17O, H2 18O, and HDO from far-infrared spectra, J. Geophys. Res. 96, 7509-7514.

    Google Scholar 

  • Donovan D. P. et al., 1997: Ozone, column ClO and PSC measurements made at the NDSC Eureka observatory (80 N, 86W) during the spring of 1997, Geophys. Res. Lett. 24, 2709-2712.

    Google Scholar 

  • Fahey D. W. et al., 1989: Measurements of nitric oxide and total reactine nitrogen in the Antarctic stratosphere: Observations and chemical implications, J. Geophys. Res. 94, 16,665-16,681.

    Google Scholar 

  • Fairlie, T. D. and Pierce, R. B. et al., 1997: Lagrangian forecasting during ASHOE/MAESA: Analysis of predictive skill for analysed and reverse domain filled potential vorticity, J. Geophys. Res. 102, 13,169-13,182.

    Google Scholar 

  • Hall, T. J. and Prather, M. J., 1995: Seasonal evolution of N2O, O3 and CO2: three-dimensional simulations of stratospheric tracer correlations, J. Geophys. Res. 100, 16,699-16,720.

    Google Scholar 

  • Johnson, D. G. et al., 1995: Detection of HBr and upper limit for HOBr: Bromine partioning in the stratospehere, Geophys. Res. Lett. 22, 1373-1376.

    Google Scholar 

  • Johnson D. G. et al., 1995: Estimating the abundance of ClO from simultaneous remote-sensing measurements of HO2, OH and HOCl, Geophys. Res. Lett. 22, 1869-1871.

    Google Scholar 

  • Knudsen B. et al., 1998: Ozone depletion in the Arctic vortex and below in 1997, Geophys. Res. Lett. 25, 627-630.

    Google Scholar 

  • Kyrö et al., 1999: Ozone measurements during the Airborne Polar Experiment: aircraft instrument validation; isentropic trends; hemispheric fields prior to the 1997 Arctic ‘Ozone Hole', J. Geophys. Res. (submitted).

  • Lee, A. M. et al., 1997: Three-dimensional chemical forecasting: a methodology, J. Geophys. Res. 102(D3), 3905-3919.

    Google Scholar 

  • Manney, G. L. and Zurek, R. W., 1993: Interhemispheric comparison of the development of the stratospheric polar vortex during fall, Geophys. Res. Lett. 20, 1275-1278.

    Google Scholar 

  • Manney G. L. et al., 1997: MLS observations of Arctic ozone loss in 1996-97, Geophys. Res. Lett. 24, 2697-2700.

    Google Scholar 

  • Martin, D. H. and Puplett, E., 1969: Polarised interferometric spectrometry for the millimetre and submillimetre spectrum, Infrared Phys. 10, 105-109.

    Google Scholar 

  • Murcray, F. J. et al., 1994: HNO3 profiles obtained during the EASOE campaign, Geophys. Res. Lett. 21, 1223-1226.

    Google Scholar 

  • Park, J. and Carli, B., 1991: Spectroscopic measurement of HO2, H2O and OH in the stratosphere, J. Geophys. Res. 96, 22,535-22,541.

    Google Scholar 

  • Plumb, R. A. and Ko, M. K. W., 1992: Interrelationships between mixing ratios of long-lived stratospheric constituents, J. Geophys. Res. 97, 10145-10156.

    Google Scholar 

  • Poynter, R. L. and Pickett, H. M., 1985: Submillimiter, millimiter and microwave spectral line catalogue, Appl. Opt. 24, 2235-2240.

    Google Scholar 

  • Prather, M., 1986: Numerical advection by conservation of second order moments, J. Geophys. Res. 91, 6671-6681.

    Google Scholar 

  • Proffitt, M. H. et al., 1993: Ozone loss inside the northern polar vortex during the 1991-1992 winter, Science 261, 1150-1154.

    Google Scholar 

  • Randall, C. E. et al., 1995: Preliminary results from POAM II: Stratospheric ozone at high northern latitudes, J. Geophys. Res. 22, 20, 2733-20,2736.

    Google Scholar 

  • Redaelli, G. et al., 1997: Trajectory analyses of polar vortex during APE/POLECAT, Proc. Fourth European Symposium on Polar Stratospheric Ozone, Schliersee, 1997.

  • Redaelli, G. et al., 1999: Trajectory analysis of transport related O3 variations during the Airborne Polar Experiment, J. Geophys. Res. Special issue on ‘Airborne Polar Experiment’ (forthcoming).

  • Rothman, L. S. et al., 1998: The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 Edition, J. Quant. Spectrosc. Radiat. Transfer 50 (forthcoming).

  • Santee, M. L. et al., 1997: MLS observations of ClO and HNO3 in the 1996–97 Arctic polar vortex, Geophys. Res. Lett. 24, 2713-2716.

    Google Scholar 

  • U.S. Standard atmosphere, 1976: U.S. Government Printing Office, Washington D.C.

  • Stefanutti, L. et al., 1999: APE-POLECAT-Rationale, road map and summary of measurements, J. Geophys. Res. Special issue on ‘Airborne Polar Experiment’ (forthcoming).

  • Swinbank, R. and O'Neill, A., 1994: A stratosphere-troposphere data assimilation system, Mon. Weather Rev. 122, 686-702.

    Google Scholar 

  • Wirth et al., 1999: Model guided Lagrangian observation and simulation, J. Geophys. Res. Special issue on ‘Airborne Polar Experiment’ (forthcoming).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carli, B., Ade, P., Carlotti, M. et al. Minor Constituent Concentrations Measured from a High Altitude Aircraft Using High Resolution Far-Infrared Fourier Transform Spectroscopy. Journal of Atmospheric Chemistry 35, 273–293 (2000). https://doi.org/10.1023/A:1006316026239

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006316026239

Navigation