Skip to main content
Log in

Scavenging Efficiency of ‘Aerosol Carbon’ and Sulfate in Supercooled Clouds at Mt. Sonnblick (3106 m a.s.l., Austria)

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Cloud water and interstitial aerosol samples collected at Mt. Sonnblick (SBO) were analyzed for sulfate and ‘aerosol carbon’ to calculate in-cloud scavenging efficiencies. Scavenging efficiencies for sulfate (εSO) ranged from 0.52 to 0.99 with an average of 0.80. ‘Aerosol carbon’ was scavenged less efficiently with an average value (εAC) of 0.45 and minimum and maximum values of 0.14 and 0.81, respectively. Both εSO and εAC showed a marked, but slightly different, dependence on the liquid water content (LWC) of the cloud. At low LWC, εSO increased with rising LWC until it reached a relatively constant value of 0.83 above an LWC of ≈ 0.3 g/m3. In the case of ‘aerosol carbon’, we obtained a more gradual increase of εAC up to an LWC of ≈ 0.5 g/m3. At higher LWCs, ε_ remained relatively constant at 0.60. As the differences between εSO and εA varied across the LWC range observed at SBO, we assume that part of the ‘aerosol carbon’ was incorporated into the cloud droplets independently from sulfate. This hypothesis is supported by size classified aerosol measurements. The differences in the size distributions of sulfate and total carbon point to a partially external mixture. Thus, the different chemical nature and the differences in the size and mixing state of the aerosol particles are the most likely candidates for the differences in the scavenging behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appel B. R., Cheng W., and Salaymeh, F., 1989: Sampling of carbonaceous particles in the atmosphere–II, Atmos. Environ. 23, 2167-2175.

    Google Scholar 

  • Brantner B., Fierlinger, H., Puxbaum, H., and Berner, A., 1994: Cloudwater chemistry in the subcooled droplet regime at Mount Sonnblick (3106 m a.s.l., Salzburg, Austria), Water Air Soil Pollut. 74, 363-384.

    Google Scholar 

  • Berner A., 1984: Design principles of the AERAS low pressure impactor, in B. Y. H. Liu and D. Y. H. Pui (eds), Aerosols, Elsevier, pp. 139-142.

  • Cadle, S. H., Groblicki, P. J., and Mulawa, P. A., 1983: Problems in the sampling and analysis of carbon particulate, Atmos. Environ. 17, 593-600.

    Google Scholar 

  • Choularton, T.W. et al. (58 authors), 1997: The great dun fell experiment 1993: An overview, Atmos. Environ. 31, 2393-2405.

    Google Scholar 

  • Collett, Jr., J. L., Prévot, A. S., Staehelin, J., and Waldvogel, A., 1991: Physical factors influencing winter precipitation chemistry, Environ. Sci. Technol. 25, 782.

    Google Scholar 

  • Daum, P. H., Kelly, T. J., Schwartz, S. E., and Newman, L., 1984: Measurements of the chemical composition of stratiform clouds, Atmos. Environ. 18, 2671-2684.

    Google Scholar 

  • Eatough, D. J., Wadsworth, A., Eatough, D. A., Crawford, J. W., Hansen, L. D., and Lewis, E. L., 1993: A multiple-system, multi channel diffusion denuder sampler for the determination of fine particulate organic material in the atmosphere, Atmos. Environ. 27, 1213-1219.

    Google Scholar 

  • Gieray, R., Wieser, P., Engelhardt, T., Swietlicki, E., Hansson, H.-C., Mentes, B., Orsini, D., Martinsson, B., Svenningsson, B., Noone, K. J., and Heintzenberg, J., 1997: Phase partitioning of aerosol constituents in cloud based on single-particle and bulk analysis, Atmos. Environ. 31, 2491-2502.

    Google Scholar 

  • Gröllert, C. and Puxbaum, H., 1999: Lipid organic aerosol and snow composition at an elevated alpine site in the fall and spring season and scavenging ratios for single compounds, Water Air Soil Pollut., in press.

  • Hallberg, A., Ogren, J. A., Noone, K. J., Heintzenberg J., Berner, A., Solly, I., Kruisz, C., Reischl, G., Fuzzi, S., Facchini, M. C., Hansson, H.-C., Wiedensohler, A., and Svenningsson, I. B., 1992: Phase partitioning for different aerosol species in fog, Tellus 44B, 545-555.

    Google Scholar 

  • Hitzenberger, R. and Puxbaum, H., 1993: Comparison of the measured and calculated specific absorption coefficient for urban aerosol samples in Vienna, Aerosol Sci. Technol. 18, 323-345.

    Google Scholar 

  • Hitzenberger, R., Berner, A., Giebl, H., Kromp, R., Larson, S. M., Rouc, A., Koch, A., Marischka, S., and Puxbaum, H., 1999: Contribution of carbonaceous material to cloud condensation nuclei concentrations in European background (Mt. Sonnblick) and urban (Vienna) aerosols, Atmos. Environ., in press.

  • Hitzenberger, R., Kromp, R., Tscherwenka, W., and Puxbaum, H., 1998: Wet scavenging of black carbon: Black carbon and ionic species concentrations in Mt. Sonnblick cloud water, J. Aerosol Sci. 29, S521-S522.

    Google Scholar 

  • Hegg, D. A., Hobbs, P. V., and Radke, L. F., 1984: Measurements of the scavenging of sulfate and nitrate in clouds, Atmos. Environ. 18, 1939-1946.

    Google Scholar 

  • Kasper, A. and Puxbaum, H., 1994: Determination of SO2, HNO3, NH3 and aerosol components at a high alpine background site with a filter pack method, Analytica Chimica Acta 291, 297-304.

    Google Scholar 

  • Kasper, A. and Puxbaum, H., 1998: Seasonal variation of SO2, HNO3, NH3 and selected aerosol components at Sonnblick (3106 m a.s.l.), Atmos. Environ. 32, 3925-3941.

    Google Scholar 

  • Kasper, A., Puxbaum, H., Brantner, B., and Paleczek, S., 1998: Scavenging efficiency of lead and sulfate in supercooled clouds at Sonnblick (3106 m a.s.l., Austria), Atmos. Environ. 32, 3967-3974.

    Google Scholar 

  • Kasper-Giebl, A., Kalina, M. F., and Puxbaum, H., 1999: Scavenging ratios for sulfate, ammonium and nitrate determined at Mt. Sonnblick (3106 m a.s.l.), Atmos. Environ. 33, 895-906.

    Google Scholar 

  • Kruisz, C., Berner, A., and Brantner, B., 1993: A cloud water sampler for high wind speeds, in P. M. Borrell et al. (eds), Proceedings of EUROTRAC Symposium '92, SPB Academic Publishing, The Hague, pp. 523-525.

    Google Scholar 

  • Leaitch, W. R., Strapp, J. W., Wieve, H. A., and Isaac, G. A., 1983: Measurements of scavenging and transformation of aerosol inside cumulus, in H. R. Pruppacher, R. G. Semonin, and W. G. N. Slinn (eds), Precipitation Scavenging, Dry Deposition and Resuspension, Elsevier Press, New York, pp. 53-69.

    Google Scholar 

  • McDow, S. R. and Huntzicker, J. J., 1990: Vapor adsorption artifact in the sampling of organic aerosol: Face velocity effects, Atmos. Environ. 24, 2563-2571.

    Google Scholar 

  • Mészaros, E., Barcza, T., Gelencsér, A., Hlavay, J., Kiss, Gy., Krivácsy, Z., Molnár, A., and Polyák, K., 1997: Size distribution of inorganic and organic species in the atmospheric aerosol in Hungary, J. Aerosol Sci. 28, 1163-1176.

    Google Scholar 

  • Murphy, D. M. and Thomson, D. S., 1997: Chemical composition of single aerosol particles at Idaho Hill: Negative ion measurements, J. Geophys. Res. 102, 6353-6368.

    Google Scholar 

  • Novakov, T. and Penner, J., 1993: Large contribution of organic aerosols to cloud-condensationnuclei concentratios, Nature 365, 823-826.

    Google Scholar 

  • Puxbaum, H. and Rendl, J., 1983: Ein automatisches Analysatorsystem zur Bestimmung von Kohlenstoff und Schwefel in luftgetragenen Stäuben, Mikrochimica Acta I, 263-272.

    Google Scholar 

  • Rogge, W. F., Mazurek, M. A., Hildemann, L. M., and Cass, G. R., 1993: Quantification of urban organic aerosols at a molecular level: Identification, abundance and seasonal variation, Atmos. Environ. 27, 1309-1330.

    Google Scholar 

  • Saxena, P. and Hildemann, L. M., 1996: Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds, J. Atmos. Chem. 24, 57-109.

    Google Scholar 

  • Ten Brink, H. M., Schwartz, S. E., and Daum, P. H., 1987: Efficient scavenging of aerosol sulfate by liquid water clouds, Atmos. Environ. 21, 2035-2052.

    Google Scholar 

  • Turpin, B. J. and Huntzicker, J. J., 1994: Investigation of organic aerosol sampling artifacts in the Los Angeles Basin, Atmos. Environ. 28, 3061-3071.

    Google Scholar 

  • Weathers, K. C. et al. (14 authors), 1988: Cloudwater chemistry from ten sites in North America, Environ. Sci. Technol. 22, 1018-1026.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasper-Giebl, A., Koch, A., Hitzenberger, R. et al. Scavenging Efficiency of ‘Aerosol Carbon’ and Sulfate in Supercooled Clouds at Mt. Sonnblick (3106 m a.s.l., Austria). Journal of Atmospheric Chemistry 35, 33–46 (2000). https://doi.org/10.1023/A:1006250508562

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006250508562

Navigation