Skip to main content
Log in

Monoclonal antibodies to growth factors and growth factor receptors: their diagnostic and therapeutic potential in brain tumors

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Weiner HL: The role of growth factor receptors in central nervous system development and neoplasia. Neurosurgery 37: 179–93; discussion 193–4, 1995

    Google Scholar 

  2. Fleming TP, Saxena A, Clark WC, et al.: Amplification and/ or overexpression of platelet-derived growth factor receptors and epidermal growth factor receptor in human glial tumors. Cancer Res 52: 4550–3, 1992

    Google Scholar 

  3. Maxwell M, Naber SP, Wolfe HJ, et al.: Coexpression of platelet-derived growth factor (PDGF) and PDGF-receptor genes by primary human astrocytomas may contribute to their development and maintenance. J Clin Invest 86: 131–40, 1990

    Google Scholar 

  4. Shamah SM, Stiles CD, Guha A: Dominant-negative mutants of platelet-derived growth factor revert the transformed phenotype of human astrocytoma cells. Mol Cell Biol 13: 7203–12, 1993

    Google Scholar 

  5. Lens PF, Altena B, Nusse R: Expression of c-sis and platelet-derived growth factor in in vitro-transformed glioma cells from rat brain tissue transplacentally treated with ethylnitrosourea. Mol Cell Biol 6: 3537–40, 1986

    Google Scholar 

  6. Kuratsu J, Ushio Y: Antiproliferative effect of trapidil, a platelet-derived growth factor antagonist, on a glioma cell line in vitro. J Neurosurg 73: 436–40, 1990

    Google Scholar 

  7. Stefanik DF, Rizkalla LR, Soi A, Goldblatt SA, Rizkalla WM: Acidic and basic fibroblast growth factors are present in glioblastoma multiforme. Cancer Res 51: 5760–5, 1991

    Google Scholar 

  8. Stefanik DF, Rizkalla LR, Soi A, Goldblatt SA, Rizkalla WM: Acidic and basic fibroblast growth factors are present in glioblastoma multiforme and normal brain. Ann NY Acad Sci 638: 477–80, 1991

    Google Scholar 

  9. Morrison RS, Gross JL, Herblin WF, et al.: Basic fibroblast growth factor-like activity and receptors are expressed in a human glioma cell line. Cancer Res 50: 2524–9, 1990

    Google Scholar 

  10. Morrison RS, Yamaguchi F, Bruner JM, Tang M, McKeehan W, Berger MS: Fibroblast growth factor receptor gene expression and immunoreactivity are elevated in human glioblastoma multiforme. Cancer Res 54: 2794–9, 1994

    Google Scholar 

  11. Gammeltoft S, Ballotti R, Kowalski A, Westermark B, Van Obberghen E: Expression of two types of receptor for insulin-like growth factors in human malignant glioma. Cancer Res 48: 1233–7, 1988

    Google Scholar 

  12. Glick RP, Gettleman R, Patel K, Lakshman R, Tsibris JC: Insulin and insulin-like growth factor I in brain tumors: binding and in vitro effects. Neurosurgery 24: 791–7, 1989

    Google Scholar 

  13. Merrill MJ, Edwards NA: Insulin-like growth factor-I receptors in human glial tumors. J Clin Endocrinol Metab 71: 199–209, 1990

    Google Scholar 

  14. Plate KH, Breier G, Millauer B, Ullrich A, Risau W: Upregulation of vascular endothelial growth factor and its cognate receptors in a rat glioma model of tumor angiogenesis. Cancer Res 53: 5822–7, 1993

    Google Scholar 

  15. Segal RA, Goumnerova LC, Kwon YK, Stiles CD, Pomeroy SL: Expression of the neurotrophin receptor TrkC is linked to a favorable outcome in medulloblastoma. Proc Natl Acad Sci USA 91: 12867–71, 1994

    Google Scholar 

  16. Nakagawara A, Arima-Nakagawara M, Scavarda NJ, Azar CG, Cantor AB, Brodeur GM: Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med 328: 847–54, 1993

    Google Scholar 

  17. Bigner DD, Brown M, Coleman RE, et al.: Phase I studies of treatment of malignant gliomas and neoplastic meningitis with 131I-radiolabeled monoclonal antibodies anti-tenascin 81C6 and anti-chondroitin proteoglycan sulfate Me1-14 F (ab’)2 — a preliminary report. J Neurooncol 24: 109–22, 1995

    Google Scholar 

  18. Zalutsky MR, Moseley RP, Coakham HP, Coleman RE, Bigner DD: Pharmacokinetics and tumor localization of 131I-labeled anti-tenascin monoclonal antibody 81C6 in patients with gliomas and other intracranial malignancies. Cancer Res 49: 2807–13, 1989

    Google Scholar 

  19. Zalutsky MR, Moseley RP, Benjamin RC et al: Monoclonal antibody and F(ab’)2 fragment delivery to tumor in patients with glioma: comparison of intracarotid and intravenous administration. Cancer Res 50: 4105–10, 1990

    Google Scholar 

  20. Buchsbaum DJ: Experimental approaches to increase radiolabeled antibody localization in tumors. Cancer Res 55: 5729s–5732s, 1995

    Google Scholar 

  21. Fujimori K, Covell DG, Fletcher JE, Weinstein JN: Modeling analysis of the global and microscopic distribution of immunoglobulin G, F(ab’)2, and Fab in tumors. Cancer Res 49: 5656–63, 1989

    Google Scholar 

  22. Fujimori K, Fisher DR, Weinstein JN: Integrated microscopic-macroscopic pharmacology of monoclonal antibody radioconjugates: the radiation dose distribution. Cancer Res 51: 4821–7, 1991

    Google Scholar 

  23. Langmuir VK, Mendonca HL, Woo DV: Comparisons between two monoclonal antibodies that bind to the same antigen but have differing affinities: uptake kinetics and 125Iantibody therapy efficacy in multicell spheroids. Cancer Res 52: 4728–34, 1992

    Google Scholar 

  24. Wargalla UC, Reisfeld RA: Rate of internalization of an immunotoxin correlates with cytotoxic activity against human tumor cells. Proc Natl Acad Sci USA 86: 5146–50, 1989

    Google Scholar 

  25. Bender H, Takahashi H, Adachi K, et al.: Immunotherapy of human glioma xenografts with unlabeled, 131I-, or 125I-labeled monoclonal antibody 425 to epidermal growth factor receptor. Cancer Res 52: 121–6, 1992

    Google Scholar 

  26. Reist CJ, Archer GE, Kurpad SN, et al.: Tumor-specific anti-epidermal growth factor receptor variant III monoclonal antibodies: use of the tyramine-cellobiose radioiodination method enhances cellular retention and uptake in tumor xenografts. Cancer Res 55: 4375–82, 1995

    Google Scholar 

  27. Reist CJ, Garg PK, Alston KL, Bigner DD, Zalutsky MR. A method for the radiohalogenation of internalizing antibodies. Society of Nuclear Medicine Annual Meeting J Nucl Med, 1996

  28. Reist CJ, Archer GE, Garg PK, Bigner DD, Zalutsky MR. N-succinimidyl 5-iodo-3-pyridinecarboxylate (SIPC) radiolabeling enhances tumor retention of an internalizing monoclonal antibody. AACR Procedings, National Meeting, 1996

  29. Ali SA, Warren SD, Richter KY, et al.: Improving the tumor retention of radioiodinated antibody: aryl carbohydrate adducts. Cancer Res 50: 783s–788s, 1990

    Google Scholar 

  30. Schuster JM, Bigner DD: Immunotherapy and monoclonal antibody therapies. Curr Opin Oncol 4: 547–52, 1992

    Google Scholar 

  31. Yokota T, Milenic De, Whitlow M, Schlom J: Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res 52: 3402–8, 1992

    Google Scholar 

  32. Yokota T, Milenic De, Whitlow M, Wood Jf, Hubert Sl, Schlom J: Microautoradiographic analysis of the normal organ distribution of radioiodinated single-chain Fv and other immunoglobulin forms. Cancer Res 53: 3776–83, 1993

    Google Scholar 

  33. Fan Z, Masui H, Altas I, Mendelsohn J: Blockade of epidermal growth factor receptor function by bivalent and monovalent fragments of 225 anti-epidermal growth factor receptor monoclonal antibodies. Cancer Res 53: 4322–8, 1993

    Google Scholar 

  34. Colapinto EV, Humphrey PA, Zalutsky MR, et al.: Comparative localization of murine monoclonal antibody Me1-14 F(ab’)2 fragment and whole IgG2a in human glioma xenografts. Cancer Res 48: 5701–7, 1988

    Google Scholar 

  35. Bullard DE, Wikstrand CJ, Humphrey PA, et al.: Specific imaging of human brain tumor xenografts utilizing radiolabelled monoclonal antibodies (MAbs). Nuklearmedizin 25: 210–5, 1986

    Google Scholar 

  36. Pastan IH, Archer GE, McLendon RE, et al.: Intrathecal administration of single-chain immunotoxin, LMB-7 [B3(Fv)-PE38], produces cures of carcinomatous meningitis in a rat model. Proc Natl Acad Sci USA 92: 2765–9, 1995

    Google Scholar 

  37. Riva P, Arista A, Franceschi G, et al.: Local treatment of malignant gliomas by direct infusion of specific monoclonal antibodies labeled with 131I: comparison of the results obtained in recurrent and newly diagnosed tumors. Cancer Res 55: 5952s–5956s, 1995

    Google Scholar 

  38. Moseley RP, Papanastassiou V, Zalutsky MR, et al.: Immunoreactivity, pharmacokinetics and bone marrow dosimetry of intrathecal radioimmunoconjugates. Int J Cancer 52: 38–43, 1992

    Google Scholar 

  39. Moseley Rp, Davies Ag, Richardson Rb, et al.: Intrathecal administration of 131I radiolabelled monoclonal antibody as a treatment for neoplastic meningitis. Brit J Cancer 62: 637–42, 1990

    Google Scholar 

  40. Papanastassiou V, Pizer BL, Chandler CL, Zananiri TF, Kemshead JT, Hopkins KI: Pharmacokinetics and dose estimates following intrathecal administration of 131I-monoclonal antibodies for the treatment of central nervous system malignancies. Int J Radiat Oncol Biol Phys 31: 541–52, 1995

    Google Scholar 

  41. Brown MT, Coleman RE, Friedman AH, et al.: Intrathecal 131I-labeled antitenascin monoclonal antibody 81C6 treatment of patients with leptomenigeal neoplasms or primary brain tumor resection cavities with subarachnoid communication: Phase 1 trial results. Clin Can Res, in press: 1996

  42. Brown MT, Coleman RE, Friedman AH, et al. Phase 1 studies 131I-81C6 mAb for recurrent cystic gliomas or brain tumor resection cavities. Society of Neuro-Oncology. Santa Fe USA, 1996: sA437

  43. Hiesiger EM, Hayes RL, Pierz DM, Budzilovich GN: Prognostic relevance of epidermal growth factor receptor (EGFR) and c-neu/erbB2 expression in glioblastomas (GBMs). J Neurooncol 16: 93–104, 1993

    Google Scholar 

  44. Coussens L, Yang-Feng TL, Liao YC, et al.: Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 230: 1132–9, 1985

    Google Scholar 

  45. Gilbertson RJ, Pearson AD, Perry RH, Jaros E, Kelly PJ: Prognostic significance of the c-erbB-2 oncogene product in childhood medulloblastoma. Br J Cancer 71: 473–7, 1995

    Google Scholar 

  46. Batra SK, Rasheed BK, Bigner SH, Bigner DD: Oncogenes and anti-oncogenes in human central nervous system tumors. Lab Invest 71: 621–37, 1994

    Google Scholar 

  47. Bigner SH, Burger PC, Wong AJ, et al.: Gene amplification in malignant human gliomas: clinical and histopathologic aspects. J Neuropathol Exp Neurol 47: 191–205, 1988

    Google Scholar 

  48. Bigner SH, Humphrey PA, Wong AJ, et al.: Characterization of the epidermal growth factor receptor in human glioma cell lines and xenografts. Cancer Res 50: 8017–22, 1990

    Google Scholar 

  49. Wong AJ, Bigner SH, Bigner DD, Kinzler KW, Hamilton SR, Vogelstein B: Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci USA 84: 6899–903, 1987

    Google Scholar 

  50. Wikstrand CJ, Hale LP, Batra SK, et al.: Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res 55 3140–8, 1995

    Google Scholar 

  51. Kurpad SN, Zhao XG, Wikstrand CJ, Batra SK, McLendon RE, Bigner DD: Tumor antigens in astrocytic gliomas. Glia 15: 244–56, 1995

    Google Scholar 

  52. Humphrey PA, Wong AJ, Vogelstein B, et al.: Amplification and expression of the epidermal growth factor receptor gene in human glioma xenografts. Cancer Res 48: 2231–8, 1988

    Google Scholar 

  53. Humphrey PA, Wong AJ, Vogelstein B, et al.: Anti-synthetic peptide antibody reacting at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma. Proc Natl Acad Sci USA 87: 4207–11, 1990

    Google Scholar 

  54. Humphrey PA, Gangarosa LM, Wong AJ, et al.: Deletion-mutant epidermal growth factor receptor in human gliomas: effects of type II mutation on receptor function. Biochem Biophys Res Commun 178: 1413–20, 1991

    Google Scholar 

  55. Batra SK, Castelino-Prabhu S, Wikstrand CJ, et al.: Epidermal growth factor ligand-independent, unregulated, cell-transforming potential of a naturally occurring human mutant EGFRvIII gene. Cell Growth Diff 6: 1251–1259, 1995

    Google Scholar 

  56. Yamazaki H, Ohba Y, Tamaoki N, Shibuya M: A deletion mutation within the ligand binding domain is responsible for activation of epidermal growth factor receptor gene in human brain tumors. Jpn J Cancer Res 81: 773–9, 1990

    Google Scholar 

  57. Nishikawa R, Ji XD, Harmon RC, et al.: A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci USA 91: 7727–31, 1994

    Google Scholar 

  58. Ekstrand AJ, Longo N, Hamid ML, et al.: Functional characterization of an EGF receptor with a truncated extracellular domain expressed in glioblastomas with EGFR gene amplification. Oncogene 9: 2313–20, 1994

    Google Scholar 

  59. Baselga J, Mendelsohn J: Receptor blockade with monoclonal antibodies as anti-cancer therapy. Pharmacol Ther 64: 127–54, 1994

    Google Scholar 

  60. Wen D, Peles E, Cupples R, et al.: Neu differentiation factor: a transmembrane glycoprotein containing an EGF domain and an immunoglobulin homology unit. Cell 69: 559–72, 1992

    Google Scholar 

  61. Peles E, Bacus SS, Koski RA, et al.: Isolation of the neu/ HER-2 stimulatory ligand: a 44 kd glycoprotein that induces differentiation of mammary tumor cells. Cell 69: 205–16, 1992

    Google Scholar 

  62. Arteaga CL, Osborne CK: Growth inhibition of human breast cancer cells in vitro with an antibody against the type I somatomedin receptor. Cancer Res 49: 6237–41, 1989

    Google Scholar 

  63. Arteaga CL, Kitten LJ, Coronado EB, et al.: Blockade of the type I somatomedin receptor inhibits growth of human breast cancer cells in athymic mice. J Clin Invest 84: 1418–23, 1989

    Google Scholar 

  64. Kim KJ, Li B, Houck K, Winer J, Ferrara N: The vascular endothelial growth factor proteins: identification of biologically relevant regions by neutralizing monoclonal antibodies. Growth Factors 7: 53–64, 1992

    Google Scholar 

  65. Drebin JA, Link VC, Stern DF, Weinberg RA, Greene MI: Down-modulation of an oncogene protein product and reversion of the transformed phenotype by monoclonal antibodies. Cell 41: 697–706, 1985

    Google Scholar 

  66. Drebin JA, Link VC, Weinberg RA, Greene MI: Inhibition of tumor growth by a monoclonal antibody reactive with an oncogene-encoded tumor antigen. Proc Natl Acad Sci USA 83: 9129–33, 1986

    Google Scholar 

  67. Baselga J, Mendelsohn J: The epidermal growth factor receptor as a target for therapy in breast carcinoma. Breast Cancer Res Treat 29: 127–38, 1994

    Google Scholar 

  68. Mendelsohn J, Masui H, Goldenberg A: Anti-epidermal growth factor receptor monoclonal antibodies may inhibit A431tumor cell proliferation by blocking an autocrine pathway. Trans Assoc Am Physicians 100: 173–8, 1987

    Google Scholar 

  69. Mendelsohn J: Anti-epidermal growth factor receptor monoclonal antibodies as potential anti-cancer agents. J Steroid Biochem Mol Biol 37: 889–92, 1990

    Google Scholar 

  70. Mendelsohn J: The epidermal growth factor receptor as a target for therapy with antireceptor monoclonal antibodies. Semin Cancer Biol 1: 339–44, 1990

    Google Scholar 

  71. Mendelsohn J: Epidermal growth factor receptor as a target for therapy with antireceptor monoclonal antibodies. Monogr Natl Cancer Inst: 125–31, 1992

  72. Lund-Johansen M, Bjerkvig R, Humphrey PA, Bigner SH, Bigner DD, Laerum OD: Effect of epidermal growth factor on glioma cell growth, migration, and invasion in vitro. Cancer Res 50: 6039–44, 1990

    Google Scholar 

  73. Rodeck U, Herlyn M, Koprowski H: Interactions between growth factor receptors and corresponding monoclonal antibodies in human tumors. J Cell Biochem 35: 315–20, 1987

    Google Scholar 

  74. Lorimer IAJ, Wikstrand CJ, Batra SK, Bigner DD, Pastan I: Immunotoxins that target an oncogenic mutant epidermal growth factor receptor expressed in human tumors. Clin Can Res 1: 859–864, 1995

    Google Scholar 

  75. Kim KJ, Li B, Winer J, et al.: Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362: 841–4, 1993

    Google Scholar 

  76. Weiner LM, Holmes M, Adams GP, LaCreta F, Watts P, Garcia de Palazzo I: A human tumor xenograft model of therapy with a bispecific monoclonal antibody targeting c-erbB-2 and CD16. Cancer Res 53: 94–100, 1993

    Google Scholar 

  77. Masui H, Moroyama T, Mendelsohn J: Mechanism of antitumor activity in mice for anti-epidermal growth factor receptor monoclonal antibodies with different isotypes. Cancer Res 46: 5592–8, 1986

    Google Scholar 

  78. Fan Z, Baselga J, Masui H, Mendelsohn J: Antitumor effect of anti-epidermal growth factor receptor monoclonal antibodies plus cis-diamminedichloroplatinum on well established A431 cell xenografts. Cancer Res 53: 4637–42, 1993

    Google Scholar 

  79. Baselga J, Norton L, Masui H, et al.: Antitumor effects of doxorubicin in combination with anti-epidermal growth factor receptor monoclonal antibodies. J Natl Cancer Inst 85: 1327–33, 1993

    Google Scholar 

  80. Gutowski MC, Briggs SL, Johnson DA: Epidermal growth factor receptor-reactive monoclonal antibodies: xenograft antitumor activity alone and as drug immunoconjugates. Cancer Res 51: 5471–5, 1991

    Google Scholar 

  81. Masui H, Kamrath H, Apell G, Houston LL, Mendelsohn J: Cytotoxicity against human tumor cells mediated by the conjugate of anti-epidermal growth factor receptor monoclonal antibody to recombinant ricin A chain. Cancer Res 49: 3482–8, 1989

    Google Scholar 

  82. Phillips PC, Levow C, Catterall M, Colvin OM, Pastan I, Brem H: Transforming growth factor-alpha-Pseudomonas exotoxin fusion protein (TGF-alpha-PE38) treatment of subcutaneous and intracranial human glioma and medulloblastoma xenografts in athymic mice. Cancer Res 54: 1008–15, 1994

    Google Scholar 

  83. Weiner LM, Clark JI, Ring DB, Alpaugh RK: Clinical development of 2B1, a bispecific murine monoclonal antibody targeting c-erbB-2 and Fc gamma RIII. J Hematother 4: 453–6, 1995

    Google Scholar 

  84. Weiner LM, Clark JI, Davey M, et al.: Phase I trial of 2B1, a bispecific monoclonal antibody targeting c-erbB-2 and Fc gamma RIII. Cancer Res 55: 4586–93, 1995

    Google Scholar 

  85. Miyamoto CT, Woo DV, Rackover MA, Brady LW, Steplewski Z. The adjuvant use of I-125 radiolabelled EGF-425 in the treatment of intracranial tumors. Third conference on radioimmunodetection and radioimmunotherapy of cancer. Princeton N.J. U.S.A: American college of radiology, 1990

    Google Scholar 

  86. Brady LW, Markoe AM, Woo DV, et al.: Iodine125 labeled anti-epidermal growth factor receptor-425 in the treatment of malignant astrocytomas. A pilot study. J Neurosurg Sci 34: 243–9, 1990

    Google Scholar 

  87. Kalofonos HP, Pawlikowska TR, Hemingway A, et al.: Antibody guided diagnosis and therapy of brain gliomas using radiolabeled monoclonal antibodies against epidermal growth factor receptor and placental alkaline phosphatase. J Nucl Med 30: 1636–45, 1989

    Google Scholar 

  88. Bigner SH, Vogelstein B, Mark J, Friedman HS, Bigner DD: Cytogenetics and molecular genetics: their status and role in understanding the behavior of central nervous system neoplasms. Monogr Pathol: 30–40, 1990

  89. Jaros E, Perry RH, Adam L, et al.: Prognostic implications of p53 protein, epidermal growth factor receptor, and Ki-67 labelling in brain tumours. Br J Cancer 66: 373–85, 1992

    Google Scholar 

  90. Arita N, Hayakawa T, Izumoto S, et al.: Epidermal growth factor receptor in human glioma. J Neurosurg 70: 916–9, 1989

    Google Scholar 

  91. Libermann TA, Nusbaum HR, Razon N, et al.: Amplification and overexpression of the EGF receptor gene in primary human glioblastomas. J Cell Sci Suppl 3: 161–72, 1985

    Google Scholar 

  92. Batra SK, Niswonger ML, Wikstrand CJ, et al.: Mouse/human chimeric Me1-14 antibody: genomic cloning of the variable region genes, linkage to human constant region genes, expression, and characterization. Hybridoma 13: 87–97, 1994

    Google Scholar 

  93. He X, Archer GE, Wikstrand CJ, et al.: Generation and characterization of a mouse/human chimeric antibody directed against extracellular matrix protein tenascin. J Neuroimmunol 52: 127–37, 1994

    Google Scholar 

  94. Slavin-Chiorini DC, Horan Hand PH, Kashmiri SV, Calvo B, Zaremba S, Schlom J: Biologic properties of a CH2 domain-deleted recombinant immunoglobulin. Int J Cancer 53: 97–103, 1993

    Google Scholar 

  95. Adams GP, McCartney JE, Tai MS, et al.: Highly specific in vivo tumor targeting by monovalent and divalent forms of 741F8 anti-c-erbB-2 single-chain Fv. Cancer Res 53: 4026–34, 1993

    Google Scholar 

  96. Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH: Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 91: 2076–80, 1994

    Google Scholar 

  97. Lieberman DM, Laske DW, Morrison PF, Bankiewicz KS, Oldfield EH: Convection-enhanced distribution of large molecules in gray matter during interstitial drug infusion. J Neurosurg 82: 1021–9, 1995

    Google Scholar 

  98. Viola JJ, Agbaria R, Walbridge S, et al.: In situ cyclopentenyl cytosine infusion for the treatment of experimental brain tumors. Cancer Res 55: 1306–9, 1995

    Google Scholar 

  99. LoBuglio AF, Wheeler RH, Trang J, et al.: Mouse/human chimeric monoclonal antibody in man: kinetics and immune response. Proc Natl Acad Sci USA 86: 4220–4, 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashley, D.M., Batra, S.K. & Bigner, D.D. Monoclonal antibodies to growth factors and growth factor receptors: their diagnostic and therapeutic potential in brain tumors. J Neurooncol 35, 259–273 (1997). https://doi.org/10.1023/A:1005812417638

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005812417638

Navigation