Biotechnology Letters

, Volume 21, Issue 10, pp 869–873 | Cite as

A new chemoheterotrophic bacterium catalyzing water-gas shift reaction

  • Gyoo Yeol Jung
  • Jung Rae Kim
  • Hyun Ok Jung
  • Ji-Young Park
  • Sunghoon Park

Abstract

A new bacterium, Citrobacter sp. Y19, catalyzing the water-gas shift reaction was isolated from an anaerobic wastewater sludge digester. It grew aerobically with a high specific growth rate of 0.7 h−1 in a mineral salt medium supplemented with yeast extract and Bacto-tryptone, and produced H2 under anaerobic conditions after the cells were transferred to tryptone-deleted medium. The maximum H2 production rate was 33 mmol H2 g−1 cell h, which was maintained for about 200 h. This is the first report on a chemoheterotrophic bacterium which utilizes CO with the production of H2 and CO2.

Citrobacter sp. Y19 CO H2 isolation water-gas shift reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul SF, Madden TL, Schifer AJ, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25: 3389–3402.Google Scholar
  2. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1989) Current Protocols in Molecular Biology. New York: John Wiley & Sons.Google Scholar
  3. Barik S, Corder RE, Clausen EC, Gaddy JL (1987) Biological conversion of coal synthesis gas to methane. Energy Prog. 7: 157–160.Google Scholar
  4. Bhatnagar L, Krzycki JA, Zeikus JG (1987) Analysis of hydrogen metabolism in Methanosarcina barkeri: regulation of hydrogenase and role of CO-dehydrogenase in H2 production. FEMS Microbiol. Lett. 41: 337–343.Google Scholar
  5. Ferry JG (1995) CO dehydrogenase. Annu. Rev. Microbiol. 49: 305–333.Google Scholar
  6. Jung GY, Jung HO, Kim JR, Ahn Y, Park S (1999) Isolation and characterization of Rhodopseudomonas palustris P4 which utilizes CO with the production of H2. Biotechnol. Lett. 21: 525–529.Google Scholar
  7. Klasson KT, Lundbäck KMO, Clausen EC, Gaddy JL (1993) Kinetics of light limited growth and biological hydrogen production from carbon monoxide and water by Rhodospirillum rubrum. J. Biotechnol. 29: 177–188.Google Scholar
  8. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, eds. Nucleic Acid Techniques in Bacterial Systematics. New York: John Wiley & Sons, pp. 115–147.Google Scholar
  9. Sakazaki R (1984) Genus IV. Citrobacter Werkman and Gillen 1932, 173AL. In: Krieg NR, ed. Bergey's Manual of Systematic Bacteriology, Vol. 1. Baltimore: Williams & Wilkins, pp. 458–461.Google Scholar
  10. Shin YK, Lee J-S, Chun CO, Kim H-J, Park Y-H (1996) Isoprenoid quinone profiles of the Leclercia adecarboxylata KCTC 1036T. J. Mirobiol. Biotechnol. 6: 68–69.Google Scholar
  11. Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int. J. Syst. Bacteriol. 43: 232–236.Google Scholar
  12. Uffen RL (1976) Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate. Proc. Natl. Acad. Sci. USA 73: 3298–3302.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Gyoo Yeol Jung
    • 1
  • Jung Rae Kim
    • 2
  • Hyun Ok Jung
    • 2
  • Ji-Young Park
    • 2
  • Sunghoon Park
    • 1
    • 2
  1. 1.Department of Chemical EngineeringInstitute for Environmental Technology and Industry, andKorea
  2. 2.Pusan National UniversityChangjon-dong, Kumjung-ku, PusanKorea

Personalised recommendations