Skip to main content
Log in

Identification and Function of Prothoracic Exocrine Gland Steroids of the Dytiscid Beetles Graphoderus cinereus and Laccophilus minutus

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The chemical composition of the prothoracic defensive secretion of the water beetles Graphoderus cinereus and Laccophilus minutus was examined by gas chromatographic–mass spectrometric analysis of trimethylsilylated gland extracts. The main components are 3α,11α-dihydroxy-5β-pregnan-20-one in G. cinereus and 3α,12α-dihydroxy-5β-pregnan20-one in L. minutus. Fully saturated pregnanes have not been found in the prothoracic defensive glands of dytiscids before. Based on tests with synthetic compounds, their biological role was examined in a feeding assay with the minnow Phoxinus phoxinus. Agar pellets containing either steroid strongly deterred feeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Adlercreutz, H., Luukainen, T., and Taylor, W. 1966. Gas chromatographic and mass spectrometric investigations of “sodium pregnanediol glucuronidate.” Eur. J. Steroids 1:117-133.

    Google Scholar 

  • BjÖrkhem, I., Gustafsson, J.-Å., and Gustafsson, S. A. 1970. Metabolism of steroids in germfree and conventional rats treated with 3β-hydroxy-Δ5-steroid oxidoreductases inhibitor. Eur. J. Biochem. 16:557-566.

    Google Scholar 

  • Blum, M. S. 1981. Chemical Defenses of Arthropods. Academic Press, New York.

    Google Scholar 

  • Blunck, H. 1917. Die Schreckdrüsen des Dytiscus und ihr Secret. Zweiter und letzter Teil. Z. Wiss. Zool. 117:205-256.

    Google Scholar 

  • Burmeister, E.-G. 1976. Der Ovipositor der Hydradephaga (Coleoptera) und seine phylogenetische Bedeutung unter besonderer Berücksichtigung der Dytiscidae. Zoomorphologie 85:165-257.

    Google Scholar 

  • Chadha, M. S., Joshi, N. K., Mamdapur, V. R., and Sipahimalani, A. T. 1970. C-21 steroids in the defensive secretions of some Indian water beetles—II. Tetrahedron 26:2061-2064.

    Google Scholar 

  • Chambaz, E. M., and Horning, E. C. 1969. Conversion of steroids to trimethylsilyl derivatives for gas phase analytical studies: reactions of silylating reagents. Anal. Biochem. 30:7-24.

    Google Scholar 

  • Chapman, J. C., Lockley, W. J. S., Rees, H. H., and Goodwin, TR. W. 1977. Stereochemistry in olefinic bond formation in defensive steroids of Acilius sulcatus (Dytiscidae). Eur. J. Biochem. 81:293-298.

    Google Scholar 

  • Dettner, K. 1985. Ecological and phylogenetic significance of defensive compounds from pygidial glands of Hydradephaga (Coleoptera). Proc. Acad. Nat. Sci. Philadelphia 137:156-171.

    Google Scholar 

  • Eriksson, H., and Gustafsson, J.-Å. 1970. Steroids in germfree and conventional rats-steroids in the mono-and disulphate fractions of faeces from female rats. Eur. J. Biochem. 16:252-260.

    Google Scholar 

  • Eriksson, H., Gustafsson, J.-Å., and SjÖvall, J. 1968. Steroids in germfree and conventional rats-4. Identification and bacterial formation of 17α-pregnane derivatives. Eur. J. Biochem. 6:219-226.

    Google Scholar 

  • Gerhart, D. J., Bondura, M. E., and Commito, J. A. 1991. Inhibition of sunfish feeding by defensive steroids from aquatic beetles: Structure-activity relationships. J. Chem. Ecol. 17:1363-1370.

    Google Scholar 

  • Gyermek, L., and Soyka, L. F. 1975. Steroid anesthetics. Anesthesiology 42:331-344.

    Google Scholar 

  • Harrison, N. L., Majewska, M. D., Harrington, J. W., and Barker, J. L. 1987. Structure-activity relationships for steroid interaction with the ?-aminobutyric acidA receptor complex. J. Pharmacol. Exp. Ther. 241:346-353.

    Google Scholar 

  • Laatikainen, T., and Vihko, R. 1969. Identification of C19O2 and C21O2 steroids in the glucuronide fraction of human bile. Eur. J. Biochem. 10:165-171.

    Google Scholar 

  • Laatikainen, T., Peltokallio, P., and Vihko, R. 1968. Steroid sulfates in human bile. Steroids 12:407-421.

    Google Scholar 

  • Ludwig, H. 1976. Isolierung hydroxylierter Steroide aus Blutplasma. PhD thesis. University of Göttingen.

  • Miller, J. R., and Mumma, R. O. 1973. Defensive agents of the American water beetles Agabus seriatus and Graphoderus liberus. J. Insect Physiol. 19:917-925.

    Google Scholar 

  • Miller, J. R., and Mumma, R. O. 1976. Physiological activity of water beetle defensive agents. I. Toxicity and anesthetic activity of steroids and norsesquiterpenes administered in solution to the minnow Pimephales promelas Raf. J. Chem. Ecol. 2:115-130.

    Google Scholar 

  • Nilsson, A., and Holmen, M. 1995. The aquatic adephaga (Coleoptera) of Fennoscandia and Denmark. II. Dytiscidae. Fauna Entomologica Scandinavica, Vol. 32. E. J. Brill, Leiden.

    Google Scholar 

  • Norberg, L., WahlstrÖm, G., and BÄckstrÖm, T. 1987. The anaesthetic potency of 3α-hydroxy-5α-pregnan-20-one and 3α-hydroxy-5β-pregnan-20-one determined with an intravenous EEGthreshold method in male rats. Pharmacol. Toxicol. 61:42-47.

    Google Scholar 

  • Phillips, G. H. 1975. Structure-activity relationships in steroidal anesthetics. J. Steroid Biochem. 6:607-613.

    Google Scholar 

  • Purdy, R. H., Moorow, A. L., Blim, J. R., and Paul, ST. M. 1990. Synthesis, metabolism, and pharmacological activity of 3α-hydroxy steroids which potentiate GABA-receptor-mediated chloride ion uptake in rat cerebral cortical synaptoneurosomes. J. Med. Chem. 33:1572-1581.

    Google Scholar 

  • Rohlf, F. J., and Sokal, R. R. 1981. Statistical Tables. W. H. Freeman and Company, New York.

    Google Scholar 

  • Schaaf, O. 1998. Steroidchemie der Schwimmkäfer-Strukturaufklärung von Inhaltsstoffen der Prothorakalwehrdrüsen und Steroidbiotransformation durch Mikroorganismen aus dem Darmtrakt der Käfer. PhD thesis. University of Bayreuth, Germany.

    Google Scholar 

  • Schaaf, O., and Dettner, K. 1997. Microbial diversity of aerobic heterotrophic bacteria inside the foregut of two tyrphophilous water beetle species (Coleoptera: Dytiscidae). Microbiol. Res. 152:57-64.

    Google Scholar 

  • Schaaf, O., and Dettner, K. 2000. Polyunsaturated monoglycerides and a pregnadiene in defensive glands of the water beetle Agabus affinis. Lipids 35:543-550.

    Google Scholar 

  • Schildknecht, H. 1968. Das Arsenal der Schwimmkäfer: Sexual hormone und “Antibiotica.” Nachr. Chem. Techn. 16:311-312.

    Google Scholar 

  • Schildknecht, H. 1970. The defensive chemistry of land and water beetles. Angew. Chem. Int. Ed. 9:1-9.

    Google Scholar 

  • Schildknecht, H. 1971. Evolutions-Spitzen der Insekten-Wehrchemie. Endeavour 30:136-141.

    Google Scholar 

  • Schildknecht, H. 1976. Chemische Ökologie-ein Kapitel moderner Naturstoffchemie. Angew. Chem. 88:235-243.

    Google Scholar 

  • Schildknecht, H. 1977. Protective substances of arthropods and plants. Pont. Acad. Sci. Scripta Varia 41:59-107.

    Google Scholar 

  • Schildknecht, H., and KÖrnig, W. 1968. Wehrstoffe des Prothorakalwehrdrüsensekrets einer mexikanischen Cybister-Art. Angew. Chem. 80:45-46.

    Google Scholar 

  • Schildknecht, H., and Tacheci, H. 1971. Colymbetin, a new defensive substance of the water beetle, Colymbetes fuscus, that lowers blood pressure-LII. J. Insect Physiol. 17:1889-1896.

    Google Scholar 

  • Schildknecht, H., Siewerdt, R., and Maschwitz, U. 1966. Ein Wirbeltierhormon als Wehrstoff des Gelbrandkäfers (Dytiscus marginalis). Angew. Chem. 78:392.

    Google Scholar 

  • Schildknecht, H., Birringer, H., and Maschwitz, U. 1967a. Testosteron als Abwehrstoff des Schlammschwimmers Ilybius. Angew. Chem. 79:579-580.

    Google Scholar 

  • Schildknecht, H., Hotz, D., and Maschwitz, U. 1967b. Über Arthropoden-Abwehrstoffe XXVII-Die C21-Steroide der Prothorakalwehrdrüsen von Acilius sulcatus. Z. Naturf. 22 b:938-944.

    Google Scholar 

  • Schildknecht, H., Tacheci, H., and Maschwitz, U. 1969. 4-Pregnen-15α,20β-diol-3-on im Wehrsekret eines Schwimmkäfers. Naturwissenschaften 56:37.

    Google Scholar 

  • Schildknecht, H., Holtkotte, D., Krauss, D., and Tacheci, H. 1975. Über Arthropodenabwehrstoffe, LIX-Platambin, ein Wehrstoff des Schwimmkäfers Platambus maculatus (Coleoptera: Dytiscidae). Liebigs Ann. Chem. 1975:1850-1862.

    Google Scholar 

  • Scrimshaw, S., and Kerfoot, W. C. 1987. Chemical defenses of freshwater organisms: beetles and bugs, pp. 240-262, in W. C. Kerfoot and A. Sih (eds.). Predation-Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, New Hampshire.

    Google Scholar 

  • Selye, H. 1942. Correlations between the chemical structure and the pharmacological action of the steroids. Endocrinology 30:437-453.

    Google Scholar 

  • Selye, H., and Heard, R. 1943. The fish assay for the anesthetic effect of the steroids. Anesthesiology 4:36-47.

    Google Scholar 

  • SjÖvall, J., and Axelson, M. 1982. Newer approaches to the isolation, identification, and quantitation of steroids in biological materials. Vitam. Horm. 39:31-144.

    Google Scholar 

  • SjÖvall, J., and Vihko, R. 1966. Identification of 3β,17β-dihydroxyandrost-5-ene, 3β,20α-dihydroxypregn-5-ene and epiandrosterone in human peripheral blood. Steroids 7:447-458.

    Google Scholar 

  • SjÖvall, J., and Vihko, R. 1968. Analysis of solvolyzable steroids in human plasma by combined gas chromatography-mass spectrometry. Acta Endocrinol. 57:247-260.

    Google Scholar 

  • Smith, A. G., and Brooks, C. J. W. 1976. Mass spectra of Δ4-and 5α-3-ketosteroids formed during theoxidation of some 3β-hydroxysteroids by cholesterol oxidase. Biomed. Mass Spectrom. 3:81-87.

    Google Scholar 

  • Sokal, R. R., and Rohlf, F. J. 1995. Biometry. W. H. Freeman and Company, New York.

    Google Scholar 

  • Ueda, I., Tatara, T. S., Chiou, J.-S., Krishna, P. D., and Kayama, H. 1994. Structure-selective anesthetic action of steroids: Anesthetic potency and effects on lipid and protein. Anesth. Analg. 78:718-725.

    Google Scholar 

  • Unruh, G. v., and Spiteller, G. 1970. Tabellen zur massenspektrometrischen Strukturaufklärung von Steroiden-III: Schlüsseldifferenzen von freien Steroiden. Tetrahedron 26:3289-3301.

    Google Scholar 

  • Vihko, R. 1966. Gas chromatographic-mass spectrometric studies on solvolyzable steroids in human peripheral plasma. Acta Endocrinol. Suppl. 109:13-67.

    Google Scholar 

  • Weber, B. 1979. Über Inhaltsstoffe in den Wehrdrüsen von Ilybius fenestratus, Dytiscus marginalis und Laccophilus minutus. PhD thesis. Ruprecht-Karl-Universität Heidelberg.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaaf, O., Baumgarten, J. & Dettner, K. Identification and Function of Prothoracic Exocrine Gland Steroids of the Dytiscid Beetles Graphoderus cinereus and Laccophilus minutus. J Chem Ecol 26, 2291–2305 (2000). https://doi.org/10.1023/A:1005570609835

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005570609835

Navigation