Space Science Reviews

, Volume 91, Issue 1–2, pp 113–154 | Cite as

Medium energy neutral atom (MENA) imager for the IMAGE mission

  • C.J. Pollock
  • K. Asamura
  • J. Baldonado
  • M.M. Balkey
  • P. Barker
  • J.L. Burch
  • E.J. Korpela
  • J. Cravens
  • G. Dirks
  • M.-C. Fok
  • H.O. Funsten
  • M. Grande
  • M. Gruntman
  • J. Hanley
  • J.-M. Jahn
  • M. Jenkins
  • M. Lampton
  • M. Marckwordt
  • D.J. McComas
  • T. Mukai
  • G. Penegor
  • S. Pope
  • S. Ritzau
  • M.L. Schattenburg
  • E. Scime
  • R. Skoug
  • W. Spurgeon
  • T. Stecklein
  • S. Storms
  • C. Urdiales
  • P. Valek
  • J.T.M. van Beek
  • S.E. Weidner
  • M. Wüest
  • M.K. Young
  • C. Zinsmeyer
Article

Abstract

The Medium Energy Neutral Atom (MENA) imager was developed in response to the Imaging from the Magnetopause to the Aurora for Global Exploration (IMAGE) requirement to produce images of energetic neutral atoms (ENAs) in the energy range from 1 to 30 keV. These images will be used to infer characteristics of magnetospheric ion distributions. The MENA imager is a slit camera that images incident ENAs in the polar angle (based on a conventional spherical coordinate system defined by the spacecraft spin axis) and utilizes the spacecraft spin to image in azimuth. The speed of incident ENAs is determined by measuring the time-of-flight (TOF) from the entrance aperture to the detector. A carbon foil in the entrance aperture yields secondary electrons, which are imaged using a position-sensitive Start detector segment. This provides both the one-dimensional (1D) position at which the ENA passed through the aperture and a Start time for the TOF system. Impact of the incident ENA on the 1D position-sensitive Stop detector segment provides both a Stop-timing signal and the location that the ENA impacts the detector. The ENA incident polar angle is derived from the measured Stop and Start positions. Species identification (H vs. O) is based on variation in secondary electron yield with mass for a fixed ENA speed. The MENA imager is designed to produce images with 8°×4° angular resolution over a field of view 140°×360°, over an energy range from 1 keV to 30 keV. Thus, the MENA imager is well suited to conduct measurements relevant to the Earth's ring current, plasma sheet, and (at times) magnetosheath and cusp.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balkey, M. M., Scime, E. E., Schattenburg, M. L. and van Beek, J.: 1998, ‘Effects of Gap Width on EUV Transmission Through Sub-Micron Period, Free-Standing Transmission Gratings’, Applied Optics 37, 5087–5092.Google Scholar
  2. Fok, M.-C., Moore, T. E. and Delcourt, D. C.: 1999, ‘Modeling of Inner Plasma Sheet and Ring Current During Substorms’, J. Geophys. Res. 104, 14,557–14,569.Google Scholar
  3. Frank, L. A., Craven, J. D., Ackerson, K. L., English, M. R., Eather, R. H. and Carovillano, R. L.: 1981, ‘Global Auroral Imaging Instrumentation for the Dynamics Explorer Mission’, Sp. Sci. Instrum. 5, 369–393.Google Scholar
  4. Frank, L. A., Craven, J. D., Burch, J. L. and Winningham, J. D.: 1982, ‘Polar Views of the Earth's Aurora with Dynamics Explorer’, Geophys. Res. Lett. 9 (9), 1001–1004.Google Scholar
  5. Funsten, H. O., McComas, D. J. and Barraclough, B. L.: 1993, ‘Ultrathin Foils Used for Low Energy Neutral Atom Imaging of Planetary Magnetospheres’, Opt. Eng 32, 3090–3095.Google Scholar
  6. Gibson, W. C. et al.: 2000, ‘The IMAGE Observatory’, Space Sci. Rev. 91, 15–50 (this issue).Google Scholar
  7. Gurgiolo, C.: 2000, ‘The IMAGE High-Resolution Data Set’, Space Sci. Rev. 91, 461–481 (this issue).Google Scholar
  8. Gruntman, M. A: 1995, ‘Extreme Ultraviolet Radiation Filtering by Freestanding Transmission Gratings’, Appl. Opt. 34, 5732–5737.Google Scholar
  9. Gruntman, M. A.: 1997, ‘Energetic Neutral Atom Imaging of Space Plasmas’, Rev. Sci. Instrum. 68, 3617–3656.Google Scholar
  10. Hall, L. A.: 1985, ‘Solar Ultraviolet Irradiance’, in A. S. Jursa (ed.), Handbook of Geophysics and the Space Environment, Air Force Geophysics Laboratory.Google Scholar
  11. Mauk, B. H. and Meng, C.-I.: 1983, ‘Characterization of Geostationary Particle Signatures Based on the ‘Injection Boundary’ Model, J. Geophys. Res. 86 (A4), 3055–3071.Google Scholar
  12. McComas, D. J., Funsten, H. O. and Scime, E. E.: 1998, ‘Advances in Low Energy Neutral Atom Imaging’, in R. Pfaff, J. Borovsky and D. T. Young (eds), Measurement Techniques for Space Plasmas (Fields), American Geophysical Union, Washington, AGU Monograph 103, 275–280.Google Scholar
  13. McComas, D. J., Funsten, H. O., Gosling, J. T., Moore, K. R., Scime, E. E. and Thomsen, M. F.: 1994, ‘Fundamentals of Low-Energy Neutral Atom Imaging’, Opt. Eng. 33 (2), 335–341.Google Scholar
  14. McComas, D. J., Barraclough, B. L., Elphic, R. C., Funsten, H. O. III and Thomsen, M. F.: 1991, ‘Magnetospheric Imaging with Low-Energy Neutral Atoms’, Proc. Natl. Acad. Sci. 88, 9598–9602.Google Scholar
  15. Meier, R. R.: 1991, ‘Ultraviolet Spectroscopy and Remote Sensing of the Upper Atmosphere’, Space Sci. Rev. 58, 1–186.Google Scholar
  16. Mende, S. B. et al.: 2000, ‘Far Ultraviolet Imaging From the IMAGE Spacecraft: 1. System Design’, Space Sci. Rev. 91, 243–270 (this issue).Google Scholar
  17. Mitchell, D. G. et al.: 2000, ‘High Energy Neutral Atom (HENA) Imager for the IMAGE Mission’, Space Sci. Rev. 91, 67–112 (this issue).Google Scholar
  18. Moore, T. E., Arnoldy, R. L., Feynman, J. and Hardy, D. A.: 1981, ‘Propagating Substorm Injection Fronts’, J. Geophys. Res. 86, 6713.Google Scholar
  19. Moore T. E. et al.: 2000, ‘Low Energy Neutral Atom (LENA) Imager for the IMAGEMission’, Space Sci. Rev. 91, 155–195 (this issue).Google Scholar
  20. Perez, J. D., Fok, M.-C. and Moore, T. E.: 2000, ‘Deconvolution of Energetic Neutral Atom Images of the Earth's Magnetosphere’, Space Sci. Rev. 91, 421–436 (this issue).Google Scholar
  21. Ritzau, S. M. and Baragiola, R. A.: 1995, ‘Electron Emission from Thin Carbon Foils by keV Ions’, Phys. Rev. B 44, 2529–2538.Google Scholar
  22. Scime, E. E, Anderson, E. H., McComas, D. J. and Schattenburg, M. L.: 1995, ‘Extreme-Ultraviolet Polarization and Filtering with Gold Transmission Gratings’, Appl. Opt. 34, 648–654.Google Scholar
  23. Van Beek, J. T. M, Fleming, R. C., Hindle, P. S., Prentiss, J. D., Schattenburg, M. L. and Ritzau, S.: 1998, ‘Nanoscale Freestanding Gratings for Ultraviolet Blocking Filters’, J. Vac. Sci. Technol. B16 (6), 3911–3916.Google Scholar
  24. Williams, D. J., Roelof, E. C. and Mitchell, D. G.: 1992, ‘Global Magnetospheric Imaging’, Rev. Geophys. 30 (3), 183–208.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • C.J. Pollock
    • 1
  • K. Asamura
    • 2
  • J. Baldonado
    • 3
  • M.M. Balkey
    • 4
  • P. Barker
    • 3
  • J.L. Burch
    • 1
  • E.J. Korpela
    • 5
  • J. Cravens
    • 1
  • G. Dirks
    • 1
  • M.-C. Fok
    • 6
  • H.O. Funsten
    • 3
  • M. Grande
    • 7
  • M. Gruntman
    • 8
  • J. Hanley
    • 1
  • J.-M. Jahn
    • 1
  • M. Jenkins
    • 1
  • M. Lampton
    • 5
  • M. Marckwordt
    • 5
  • D.J. McComas
    • 3
  • T. Mukai
    • 2
  • G. Penegor
    • 5
  • S. Pope
    • 1
  • S. Ritzau
    • 3
  • M.L. Schattenburg
    • 8
  • E. Scime
    • 4
  • R. Skoug
    • 3
  • W. Spurgeon
    • 3
  • T. Stecklein
    • 1
  • S. Storms
    • 3
  • C. Urdiales
    • 1
  • P. Valek
    • 1
  • J.T.M. van Beek
    • 9
  • S.E. Weidner
    • 1
  • M. Wüest
    • 1
  • M.K. Young
    • 1
  • C. Zinsmeyer
    • 1
  1. 1.Southwest Research InstituteSan AntonioU.S.A.
  2. 2.Institute of Space and Astronautical SciencesKanagawaJapan
  3. 3.Los Alamos National Laboratory, CSSE/NIS-1Los AlamosU.S.A.
  4. 4.Department of PhysicsWest Virginia UniversityMorgantownU.S.A.
  5. 5.Space Sciences LaboratoryUniversity of California at BerkeleyBerkeleyU.S.A.
  6. 6.Universities Space Research Association, NASA GSFCGreenbeltU.S.A.
  7. 7.Rutherford Appleton LaboratoryOxfordshireEngland
  8. 8.Department of Aerospace EngineeringUniversity of Southern CaliforniaLos AngelesU.S.A.
  9. 9.Philips Research LaboratoriesEindovenThe Netherlands

Personalised recommendations