Advertisement

Studia Logica

, Volume 64, Issue 1, pp 3–20 | Cite as

The Idea of a Proof-Theoretic Semantics and the Meaning of the Logical Operations

  • Heinrich Wansing
Article

Abstract

This is a purely conceptual paper. It aims at presenting and putting into perspective the idea of a proof-theoretic semantics of the logical operations. The first section briefly surveys various semantic paradigms, and Section 2 focuses on one particular paradigm, namely the proof-theoretic semantics of the logical operations.

proof systems semantics functional completeness non-classical logics modal logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Almukdad, A., and D. Nelson, ‘Constructible falsity and inexact predicates’, Journal of Symbolic Logic 49 (1984), 231-233.CrossRefGoogle Scholar
  2. [2]
    Belnap, N. D., ‘Display Logic’, Journal of Philosophical Logic 11, 375-417, 1982. Reprinted with minor changes as §62 of A. R. Anderson, N. D. Belnap, and J. M. Dunn, Entailment: the logic of relevance and necessity, Vol. 2, Princeton University Press, Princeton, 1992.Google Scholar
  3. [3]
    Belnap, N. D., ‘Linear Logic Displayed’, Notre Dame Journal of Formal Logic 31 (1990), 14-25.CrossRefGoogle Scholar
  4. [4]
    Belnap, N. D., ‘The Display Problem’, in: H. Wansing (ed.), Proof Theory of Modal Logic, Kluwer Academic Publishers, Dordrecht, 1996, 79-92.Google Scholar
  5. [5]
    Van Benthem, J., ‘Games in logic: A survey’, in: J. Ph. Hoepelman (ed.), Representation and Reasoning, Max Niemeyer Verlag, Tübingen, 1988, 3-15.Google Scholar
  6. [6]
    Van Benthem, J., Exploring Logical Dynamics, CSLI Publications, Stanford, 1996.Google Scholar
  7. [7]
    Gentzen, G., ‘Investigations into logical deduction’, in: M. E. Szabo (ed.), The Collected Papers of Gerhard Gentzen, North Holland, Amsterdam, 1969, 68-131. English translation of: Untersuchungen über das logische Schließen, Mathematische Zeitschrift 39 (1934), I 176–210, II 405–431.Google Scholar
  8. [8]
    Girard, J.-Y., Y. Lafont, and P. Taylor, Proofs and Types, Cambridge University Press, Cambridge, 1989.Google Scholar
  9. [9]
    Groenendijk, J., and M. Stockhof, ‘Dynamic Predicate Logic’, Linguistics and Philosophy 14 (1991), 39-100.CrossRefGoogle Scholar
  10. [10]
    Felscher, W., ‘Dialogues as a foundation for intuitionistic logic’, in: D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Vol. III, Reidel, Dordrecht, 1986, 341-372.Google Scholar
  11. [11]
    Hacking, I., ‘What is logic?’, The Journal of Philosophy 76 (1979), 285-319. Reprinted in: D. Gabbay (ed.), What is a Logical System?, Oxford University Press, Oxford, 1994, 1–33. (Cited after the reprint.)CrossRefGoogle Scholar
  12. [12]
    Hintikka, J., Logic, Language Games and Information, Clarendon Press, Oxford, 1973.Google Scholar
  13. [13]
    Hintikka, J., and J. Kulas, The Game of Language, Reidel, Dordrecht, 1983.Google Scholar
  14. [14]
    Hintikka, J., and G. Sandu, ‘Game-theoretical semantics’, in: J. van Benthem and A. ter Meulen (eds.), Handbook of Logic and Language, Elsevier, Amsterdam and MIT Press, Cambridge (Mass.), 1997, 361-410.Google Scholar
  15. [15]
    Kracht, M., ‘Power and weakness of the Modal Display Calculus’, in: H. Wansing (ed.), Proof Theory of Modal Logic, Kluwer Academic Publishers, Dordrecht, 1996, 93-121.Google Scholar
  16. [16]
    Von Kutschera, F., ‘Die Vollständigkeit des Operatorensystems ·¬, ∧, ∨, ⊃× für die intuitionistische Aussagenlogik im Rahmen der Gentzensemantik’, Archiv für Mathematische Logik und Grundlagenforschung 11 (1968), 3-16.CrossRefGoogle Scholar
  17. [17]
    Von Kutschera, F., ‘Ein verallgemeinerter Widerlegungsbegriff für Gentzenkalküle’, Archiv für Mathematische Logik und Grundlagenforschung 12 (1969), 104-118.CrossRefGoogle Scholar
  18. [18]
    Lorenz, K., ‘Dialogspiele als semantische Grundlage von Logikkalkülen’, Archiv für mathematische Logik und Grundlagenforschung 11 (1968), 32-55, 73–100. Reprinted in: P. Lorenzen and K. Lorenz, Dialogische Logik, Wissenschaftliche Buchgesellschaft, Darmstadt, 1978, 96–162.CrossRefGoogle Scholar
  19. [19]
    Lorenz, K., ‘Dialogspiele und Syntax’, in: M. Dascal et al. (eds.), Sprachphilosophie/Philosophy of Language/La philosophie du langage, Volume 2, de Gruyter, Berlin, 1996, 1380-1391.Google Scholar
  20. [20]
    McCullough, D. P., ‘Logical connectives for intuitionistic propositional logic’, Journal of Symbolic Logic 36 (1971), 15-20.CrossRefGoogle Scholar
  21. [21]
    Prawitz, D., 'Proofs and the meaning and completeness of the logical constants, in: J. Hintikka et al. (eds.), Essays on Mathematical and Philosophical Logic, Reidel, Dordrecht, 1979, 25-40.Google Scholar
  22. [22]
    Restall, G., ‘Displaying and deciding substructural logics 1: Logics with contraposition’, Journal of Philosophical Logic 27 (1998), 179-216.CrossRefGoogle Scholar
  23. [23]
    Restall, G., ‘Display logic and gaggle theory’, Reports on Mathematical Logic 29 (1995), 133-146, (published 1996).Google Scholar
  24. [24]
    Schroeder-Heister, P., ‘A natural extension of natural deduction’, Journal of Symbolic Logic 49 (1984), 1284-1300.CrossRefGoogle Scholar
  25. [25]
    Schroeder-Heister, P., ‘Uniform proof-theoretic semantics for logical constants’ (abstract), Journal of Symbolic Logic 56 (1991).Google Scholar
  26. [26]
    Sundholm, G., ‘Proof-theoretical semantics and Fregean identity-criteria for propositions’, The Monist 77 (1994), 294-314.Google Scholar
  27. [27]
    Tennant, N., Natural Logic, Edinburgh University Press, Edinburgh, 1978.Google Scholar
  28. [28]
    Tennant, N., ‘The transmission of truth and the transitivity of deduction’, in: D. Gabbay (ed.), What is a Logical System?, Oxford University Press, Oxford, 1994, 161-178.Google Scholar
  29. [29]
    Wansing, H., ‘Functional completeness for subsystems of intuitionistic propositional logic’, Journal of Philosophical Logic 22 (1993), 303-321.CrossRefGoogle Scholar
  30. [30]
    Wansing, H., The Logic of Information Structures, Lecture Notes in AI 681, Springer-Verlag, Berlin, 1993.Google Scholar
  31. [31]
    Wansing, H., ‘Sequent calculi for normal modal propositional logics’, Journal of Logic and Computation 4 (1994), 125-142.Google Scholar
  32. [32]
    Wansing, H., ‘Tarskian structured consequence relations and functional completeness’, Mathematical Logic Quarterly 41 (1995), 73-92.Google Scholar
  33. [33]
    Wansing, H., ‘Strong cut-elimination in Display Logic’, Reports on Mathematical Logic 29 (1995), 117-131, (published 1996).Google Scholar
  34. [34]
    Wansing, H., ‘A proof-theoretic proof of functional completeness for many modal and tense logics’, in: H. Wansing (ed.), Proof Theory of Modal Logic, Kluwer Academic Publishers, Dordrecht, 1996, 123-136.Google Scholar
  35. [35]
    Wansing, H., ‘Modal tableaux based on residuation’, Journal of Logic and Computation 7 (1997), 719-731.CrossRefGoogle Scholar
  36. [36]
    Wansing, H., ‘Predicate Logics on Display’, Studia Logica 62 (1999), 49-75.CrossRefGoogle Scholar
  37. [37]
    Wittgenstein, L., Philosophical Investigations, Blackwell, Oxford, 1953.Google Scholar
  38. [38]
    Zucker, J., and R. Tragesser, ‘The adequacy problem for inferential logic’, Journal of Philosophical Logic 7 (1978), 501-516.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Heinrich Wansing
    • 1
  1. 1.Institute of Logic and Philosophy of ScienceUniversity of LeipzigLeipzigGermany

Personalised recommendations