Skip to main content
Log in

A Parallel Adaptive 3D MHD Scheme for Modeling Coronal and Solar Wind Plasma Flows

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

A parallel adaptive mesh refinement (AMR) scheme is described for solving the governing equations of ideal magnetohydrodynamics (MHD) in three space dimensions. This solution algorithm makes use of modern finite-volume numerical methodology to provide a combination of high solution accuracy and computational robustness. Efficient and scalable implementations of the method have been developed for massively parallel computer architectures and high performance achieved. Numerical results are discussed for a simplified model of the initiation and evolution of coronal mass ejections (CMEs) in the inner heliosphere. The results demonstrate the potential of this numerical tool for enhancing our understanding of coronal and solar wind plasma processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berger, M. J.: 1984, Adaptive mesh refinement for hyperbolic partial differential equations, J.Comput. Phys., 53, 484.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Berger, M. J., and Colella, P.: 1989, Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., 82, 67.

    Article  ADS  Google Scholar 

  • De Zeeuw, D., and Powell, K. G.: 1993, An adaptively refined Cartesian mesh solver for the Euler equations, J. Comput. Phys., 104, 56.

    Article  MATH  ADS  Google Scholar 

  • De Zeeuw, D. L., Groth, C. P. T., Marshall, H. G., Gombosi, T. I., Powell, K. G., and Stout, Q. F.: 1998, A parallel adaptive high-resolution scheme for MHD with applications in space plasma physics, SIAM J. Sci. Comput., submitted.

  • Dryer, M.: 1998, Multidimensional MHD simulation of solar-generated disturbances: Space weather forecasting of geomagnetic storms, AIAA J., 36 (3), 365.

    Article  ADS  Google Scholar 

  • Einfeldt, B., Munz, C. D., Roe, P. L., and Sjögreen, B.: 1991, On Godunov-type methods near low densities, J. Comput. Phys., 92, 273.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Godunov, S. K.: 1959, Finite-difference method for numerical computations of discontinuous solutions of the equations of fluid dynamics, Mat. Sb., 47, 271.

    MATH  MathSciNet  Google Scholar 

  • Guo, W. P., and Wu, S. T.: 1998, A magnetohydrodynamic description of coronal helmet streamers containing a cavity, Astrophys. J., 494, 419.

    Article  ADS  Google Scholar 

  • Harten, A., Lax, P. D., and van Leer, B.: 1983, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25 (1), 35.

    Article  MATH  MathSciNet  Google Scholar 

  • Linde, T. J.: 1998, A Three-Dimensional Adaptive Multifluid MHD Model of the Heliosphere, Ph.D. thesis, University of Michigan.

  • Linker, J. A., and Mikić, Z.: 1995, Disruption of a helmet streamer by photospheric shear, Astrophys. J. 438, L45.

    Article  ADS  Google Scholar 

  • Lionello, R., Mikić, Z., and Schnack, D. D.: 1998, Magnetohydrodynamics of solar coronal plasmas in cylindrical geometry, J. Comput. Phys., 140, 172.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • McComas, D., et al.: Ulysses' return to the slow solar wind, Geophys. Res. Lett., 25, 1.

  • Mikić, Z., and Linker, J. A.: 1994, Disruption of coronal magnetic field arcades, Astrophys. J., 430, 898.

    Article  ADS  Google Scholar 

  • Odstrčil, D., and Pizzo, V. J.: 1998, Three-dimensional propagation of a CME within a tilted-dipole background solar wind flow, J. Geophys. Res., submitted.

  • Pneuman, G. W., and Kopp, R. A.: 1971, Gas-magnetic field interactions in the solar corona, Sol. Phys., 18, 258.

    Article  ADS  Google Scholar 

  • Powell, K. G.: 1994, An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension), Report 94–24, ICASE.

  • Powell, K. G., Roe, P. L., Myong, R. S., Gombosi, T. I., and De Zeeuw, D. L.: 1995, An upwind scheme for magnetohydrodynamic, Paper 95–1704-CP, AIAA.

  • Quirk, J. J.: 1991, An Adaptive Grid Algorithm for Computational Shock Hydrodynamics, Ph.D. thesis, Cranfield Institute of Technology.

  • Quirk, J. J., and Hanebutte, U. R.: A parallel adaptive mesh refinement algorithm, Report 93–63, ICASE.

  • Roe, P. L.: 1981, Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 357.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Roe, P. L., and Balsara, D. S.: 1996, Notes on the eigensystem of magnetohydrodynamics, SIAM J. Appl. Math., 56 (1), 57.

    Article  MATH  MathSciNet  Google Scholar 

  • Van Leer, B.: 1979, Towards the ultimate conservative difference scheme. v. a second-order sequel to Godunov's method, J. Comput. Phys., 32, 101.

    Article  ADS  Google Scholar 

  • Van Leer, B., Tai, C. H., and Powell, K. G.: 1989, Design of optimally-smoothing multi-stage schemes for the Euler equations, Paper 89–1933-CP, AIAA.

  • Wu, S. T., and Guo, W. P.: 1997, A self-consistent numerical magnetohydrodynamic (MHD) model of helmet streamer and flux rope interactions: Initiation and propagation of coronal mass ejections (CMEs), in Coronal Mass Ejections, Geophysical Monograph 99, (American Geophysical Union, Washington).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groth, C.P.T., De Zeeuw, D.L., Gombosi, T.I. et al. A Parallel Adaptive 3D MHD Scheme for Modeling Coronal and Solar Wind Plasma Flows. Space Science Reviews 87, 193–198 (1999). https://doi.org/10.1023/A:1005136115563

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005136115563

Navigation