Journal of Materials Science

, Volume 34, Issue 23, pp 5927–5936 | Cite as

The effect of time and temperature on flexural creep and fatigue strength of a silica particle filled epoxy resin

  • M. K. McMurray
  • Shigeo Amagi


Composite materials that use an epoxy resin as a matrix resins have superior mechanical properties over standard structural materials, but these materials exhibit time and temperature behavior when used for long periods and under high temperatures. This time and temperature behavior has not been fully explained. The purpose of this paper is to further describe this time and temperature behavior, increasing the reliability of this class of composite materials. The time and temperature dependence of flexural strength was examined by creep and fatigue testing. Flexural creep tests were carried out at various temperatures below the glass transition temperature. Flexural fatigue tests were carried out at various stress ratios, temperatures below the glass transition temperature and 2 frequencies. The time-temperature superposition principle held for the flexural creep strength of this material. A method to predict flexural creep strength based on the static strength master curve and the cumulative damage law is proposed. When the fatigue frequency was decreased while temperature and stress ratio are held constant the flexural fatigue strength decreases. The time-temperature superposition principle was also found to hold for the flexural fatigue strength with respect to frequency.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Miyano, M. Kanemitsu, T. Kunio and H. Kuhn, Journal of Composite Materials 20(1986) 520.Google Scholar
  2. 2.
    L. E. Nielsen, “Mechanical Properties of Polymers” (Reinhold Publishing Corporation, New York, NY, 1962).Google Scholar
  3. 3.
    A. J. Barker and H. Vangerko, Composites 14(2) (1983) 141.Google Scholar
  4. 4.
    K. Pannkoke and H.-J. Wagner, Cryogenics 31(1991) 248.Google Scholar
  5. 5.
    Y. Sadkin and J. Aboudi, Composite Science and Technology 36(1989) 351.Google Scholar
  6. 6.
    M. G. Northolt, Journal of Material Science 16(1981) 2025.Google Scholar
  7. 7.
    S. K. Brown, The British Polymer Journal 14(1982) 1.Google Scholar
  8. 8.
    M. Miwa, A. Takeno, K. Hara and A. Watanabe, Composites 26(1995) 371.Google Scholar
  9. 9.
    A. C. Moloney, H. H. Kausch, T. Kaiser and H. R. Beer, Journal of Material Science 22(1987) 381.Google Scholar
  10. 10.
    A. G. Evans, S. Williams and P. W. R. Beaumont, ibid. 20(1985) 3668.Google Scholar
  11. 11.
    H. R. Beer and T. Kaiser, Fillers(1986) 16.1–16.4.Google Scholar
  12. 12.
    G. Tsagaropoulos and A. Eisenberg, Macromolecules 28(1995) 6067.Google Scholar
  13. 13.
    W. Jiang, H. Liang, J. Zhang, D. He and B. Jiang, Journal of Applied Polymer Science 58(3) (1995) 537.Google Scholar
  14. 14.
    D. S. Kim, K. Cho, J. K. Kim and C. E. Park, Polymer Engineering and Science 36(6) (1996) 755.Google Scholar
  15. 15.
    A. Nishimura, A. Yaguchi and S. Kawai, Zairyou 38(434) (1989) 92, Japanese.Google Scholar
  16. 16.
    L. Sinien, Z. Ziaoguang, Q. Zhongneng and Z. Haun, Journal of Materials Science Letters 14(1995) 1458.Google Scholar
  17. 17.
    K. Higashibata, T. Miyamoto, K. Hayashi and T. Tanaka, IEEE Japan 114-B(5) (1994) 539, Japanese.Google Scholar
  18. 18.
    D. L. Barron, D. H. Kelley and L. T. Blankenship, in Proceedings of 44th Annual Conference (Composite Institute, The Society of the Plastics Industry, Inc., 1989) p. 14-C-1.Google Scholar
  19. 19.
    A. Yaguchi and A. Nishimura, Zairyou 42472) (1993) 40, Japanese.Google Scholar
  20. 20.
    S. W. Shang, J. W. Williams and K-J. M. S¨odeholm, Journal of Material Science 30(1995) 4323.Google Scholar
  21. 21.
    Y. Miyano, M. K. Mcmurray, J. Enyama and M. Nakada, Journal of Composite Materials 28(13) (1994) 1250.Google Scholar
  22. 22.
    M. K. Mcmurray, M. Nakada and Y. Miyano, ibid. 29(14) (1995) 1808.Google Scholar
  23. 23.
    Idim., in Proceeding 40th International SAMPE Symposium and Exhibition (1995) 1316.Google Scholar
  24. 24.
    B. Harris, H. Reiter, T. Adam, R. F. Dickson and G. Fernando, Composites 21(3) (1990) 232.Google Scholar
  25. 25.
    R. W. Herzberg and J. A. Manson, Fatigue Environ Temp Eff(1993) 231.Google Scholar
  26. 26.
    L. J. Broutman and S. K. Gaggar, in Proceedings 27th Annual Technical Conference (Reinforced Plastics/Composites Institute, The Society of the Plastics Industry, Inc., 1972).Google Scholar
  27. 27.
    M. K. Mcmurray and S. Amagi, in Proceedings of 28th International SAMPE Technical Conference (1996) 699.Google Scholar
  28. 28.
    J I S, Japanese Standards Association K 7203–1982 (1982).Google Scholar
  29. 29.
    F. Schwarzl and A. J. Staverman, Journal of Applied Physics 23(8) (1952) 838.Google Scholar
  30. 30.
    M. L. Williams, R. F. Landel and J. D. Ferry, Journal of the American Chemical Society 77(1955) 3701.Google Scholar
  31. 31.
    E. Kreyszis, “Advanced Engineering Mathematics,” 3rd ed. John Wiley and Sons, Inc., New York, 1972) p. 723.Google Scholar
  32. 32.
    Y. Miyano, M. K. Mcmurray and R. Muki, in Proceedings of 1995 ASME Summer Mechanics Conference (AMD-Vol. 204 Numerical Methods in Structural Mechanics 1995) 69.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • M. K. McMurray
    • 1
  • Shigeo Amagi
    • 1
  1. 1.The First Department of Materials Research, Insulating Materials Group, Hitachi Research LaboratoryHitachi, Ltd.Hitachi-shiJapan

Personalised recommendations