Advertisement

Journal of Materials Science

, Volume 34, Issue 19, pp 4633–4638 | Cite as

Corrosion resistance and microstructure of stainless steel modified by pulsed high energy density plasma

  • Wei Kun
  • Wu Xingfang
  • Fu Ying
  • Yang Si-Ze
  • Li Bing
Article

Abstract

Pulsed high energy density plasma has been used to deposit aluminum nitride films on the surface of the 1Cr18Ni9Ti stainless steel (∼0.1% C, ∼18% Cr, ∼9% Ni, ∼0.8% Ti). The formed films are composed of nanocrystalline-structured aluminum nitride phase, whose crystal sizes are about 10 nm. Transition areas are formed across the film to the substrate and strengthen the adhesion between them. The nanocrystalline-structured aluminum nitride films contribute to the improvement of the corrosion resistance of the modified stainless steel, whose corrosion rate has been reduced by about ten times compared with that of the unmodified stainless steel.

Keywords

Polymer Aluminum Microstructure Stainless Steel Energy Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. V. Boening, “Plasma Science and Technology” (Cornell University Press, Ithaca and London, 1982) p. 266.Google Scholar
  2. 2.
    D. M. Mottox, J. E. Greene, D. H. Bucley and G. A. Somorjai, Mater. Sci. & Eng. 70 (1985) 79–89.Google Scholar
  3. 3.
    H. Takaoka, Thin Solid Films 157 (1988).Google Scholar
  4. 4.
    Y. G. Roman and A. P. M. Adriaansen, ibid. 169 (1989) 241–248.Google Scholar
  5. 5.
    J.-G. Kim, C.-S. Dark and J. S. Chun, ibid. 97 (1982)Google Scholar
  6. 6.
    R. Macmahon, J. Affimito and R. Parsons, J. Vac.Sci. Technol. 20 (1982) 376.Google Scholar
  7. 7.
    G. Este, R. Surrige and W. D. Westwood, ibid. A3(4) (1986) 989.Google Scholar
  8. 8.
    F. Alexandre, J. M. Masson and A. Scavenne, Thin Solid Films 1(98) (1982) 75.Google Scholar
  9. 9.
    P. X. Yan, S. Z. Yang and X. S. Chen, Acta Metall. Sinica 11(50) (1994) 24–27.Google Scholar
  10. 10.
    P. S. Yan, S. Z. Yang, B. Liand X. S. Chen, Phys. Stat. Sol. (a) 145 (1994) K29.Google Scholar
  11. 11.
    L. L. Shreir, “Corrosion” (George Newnes Ltd., London, 1983) p. 21.10.Google Scholar
  12. 12.
    L. J. Korb and D. L. Olson, “Metals Handbookd” (Metals Park, Ohio, 1987) p. 511.Google Scholar
  13. 13.
    J. Liangand Y. Che, “Wujiwu Relixue Shuju Shouce” (Northeast University Press, Beijing, 1993) p. 51.Google Scholar
  14. 14.
    LU Ke and ZHOU Fei, Acta Metall. Sinica 33 (1997) 99–106.Google Scholar
  15. 15.
    R. B. Inturi and Z. S. Smialowska, Cossion 5(48) (1992) 398–403.Google Scholar
  16. 16.
    G. Paulumbo, S. J. Thorpe and K. T. Aust, Script. Metall. et Material 24 (1990) 1347–1350.Google Scholar
  17. 17.
    G. J. Thomas, R. W. Siegel and J. A. Eastman, ibid. 24 (1990) 201.Google Scholar
  18. 18.
    J. Wang, D. Wolf and S. R. Phillpot, Philosophy Magazine A 73 (1996) 517.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Wei Kun
    • 1
  • Wu Xingfang
    • 1
  • Fu Ying
    • 1
  • Yang Si-Ze
    • 2
  • Li Bing
    • 2
  1. 1.Department of Materials PhysicsUniversity of Science and Technology, BeijingBeijingPeople's Republic of China
  2. 2.Institute of PhysicsChinese Science AcademyBeijingPeople's Republic of China

Personalised recommendations