Journal of Materials Science

, Volume 34, Issue 19, pp 4719–4726 | Cite as

Model filled rubber IV: Dependence of stress-strain relationship on filler particle morphology

  • Jianfen J. Cai
  • R. Salovey


The addition of monodisperse size crosslinked polystyrene (PS) particles, synthesized by emulsifier-free emulsion polymerization, to polysulfide matrix enhanced mechanical properties of the cured rubbery composites. The modulus, fracture strength, and elongation at break increased with increasing filler volume fraction up to 30 wt % PS particles. The strength and elongation at break decreased with increasing particle diameter from 0.315 to 1.25 μm. The strength at break increased, but the extension decreased, as the particle crosslink density increased from 0 to 5 mol % DVB. Interparticle interactions are dominant and lead to the formation of clusters which form a network structure in PS particle filled composites. Since the number density, as well as the total surface area, of particles increase with decreasing particle diameter, interparticle attractions are enhanced, the tendency for cluster formation increased with decreasing particle size from 1.25 to 0.315 μm. As particle crosslink density was reduced, the porosity and surface roughness of particles increased. Then, the dispersion of particles in the matrix was enhanced and particle agglomeration reduced but more polymer matrix was adsorbed on the particles. These particles or clusters act as physical crosslinks, resulting in an increased total effective crosslink density in the filled composites.


Fracture Strength Crosslink Density Emulsion Polymerization Total Surface Area Polysulfide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. C. Edwards, J. Mater. Sci. 25 (1990) 4175.Google Scholar
  2. 2.
    E. Schmidt, Ind. Eng. Chem. 43 (1951) 679.Google Scholar
  3. 3.
    P. Delfosse, Rubber Plastics Age 38 (1957) 257.Google Scholar
  4. 4.
    M. P. Wagner, Rubber Chem. Technol. 49 (1976) 703.Google Scholar
  5. 5.
    S. W. Shang, J. W. Williams and K. J. M. Soderholm, J. Mater. Sci. 27 (1992) 4949.Google Scholar
  6. 6.
    K. J. M. Soderholm and S. W. Shang, J. Dent. Res. 72 (1993) 1050.Google Scholar
  7. 7.
    R. S. Chahal and L. E. St. pierre, Macromolecules 1 (1968) 152.Google Scholar
  8. 8.
    Idem., Ibid. 1 (1969) 193.Google Scholar
  9. 9.
    P. H. T. Vollenberg and D. Heikens, in "Composite Interface," edited by H. Ishida and J. L. Koenig (Elsevier Scientific, New York, 1986) p. 171.Google Scholar
  10. 10.
    D. M. Bigg, Polym. Composite 8 (1987) 115.Google Scholar
  11. 11.
    S. Mitsuishi, S. Kodama and H. Kawasaki, ibid. 9 (1988) 112.Google Scholar
  12. 12.
    A. Voet, J. Polym. Sci. 15 (1980) 327.Google Scholar
  13. 13.
    L. E. Nielsen, "Mechanical Properties of Polymer and Composites" (Marcel Dekker, New York, 1974) p. 411.Google Scholar
  14. 14.
    M. Sumita, T. Okuma, K. Miyasaka and K. Ishikawa, J. Appl. Polym. Sci. 27 (1982) 3059.Google Scholar
  15. 15.
    G. Landon, G. Lewis and G. F. Boden, J. Mater. Sci. 12 (1977) 1605.Google Scholar
  16. 16.
    G. Kraus, "Reinforcement of Elastomers" (JohnWiley & Sons, New York, 1965) p. 129.Google Scholar
  17. 17.
    Q. Li, PhD dissertation, University of Southern California, 1996.Google Scholar
  18. 18.
    D. Zou et al., J. Polym. Sci.: Part A: Polym. Chem. 28 (1990) 1909.Google Scholar
  19. 19.
    D. Zou, S. Ma, R. Guan, M. Park, L. Sun, J. J. Aklonis and R. Salovey, Ibid. 30 (1992) 137.Google Scholar
  20. 20.
    Z. Y. Ding, S. Ma, D. Kriz, J. J. Aklonis and R. Salovey, J. Polym. Sci.: Part B: Polym. Phys. 30 (1992) 1189.Google Scholar
  21. 21.
    D. Zou, L. Sun, J. J. Aklonis and R. Salovey, J. Polym. Sci.: Part A: Polym Chem. 30 (1992) 1463.Google Scholar
  22. 22.
    J. Lee and M. Senna, Colloid Polym. Sci. 273 (1995) 76.Google Scholar
  23. 23.
    M. Okubo and T. Nakagawa, Ibid. 272 (1994) 530.Google Scholar
  24. 24.
    L. Sun, PhD dissertation, University of Southern California, 1992.Google Scholar
  25. 25.
    A. N. Gent, in "Science and Technology of Rubber," edited by F. R. Eirich (Academic Press, New York, 1978) p. 424.Google Scholar
  26. 26.
    A. M. Bueche, J. Polym. Sci. 25 (1957) 139.Google Scholar
  27. 27.
    F. R. Eirich, "Science and Technology of Rubber" (Academic Press, New York, 1978).Google Scholar
  28. 28.
    J. F. Cai and R. Salovey, Polym. Eng. Sci. (1998), submitted.Google Scholar
  29. 29.
    E. Guth and O. Gold, Phys. Rev. 53 (1938) 322.Google Scholar
  30. 30.
    S. Ahmed and F. R. Jones, J. Mater. Sci. 25 (1990) 4933.Google Scholar
  31. 31.
    J. Furukawa and E. Yamada, J. Appl. Polym. Sci. 52 (1994) 1587.Google Scholar
  32. 32.
    D. S. Ogunniyi, Elastomerics 9 (1986) 24.Google Scholar
  33. 33.
    J. N. Goodier, J. Appl. Mech. Trans. AME A3 (1988) 55.Google Scholar
  34. 34.
    A. Oberth, Rubber Chem. Technol. 40 (1967) 1337.Google Scholar
  35. 35.
    F. R. Eirich, Engineering Fracture Mechanics 5 (1973) 555.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Jianfen J. Cai
    • 1
  • R. Salovey
    • 1
  1. 1.Department of Chemical EngineeringUniversity of Southern CaliforniaLos Angeles

Personalised recommendations