Journal of Materials Science

, Volume 34, Issue 19, pp 4711–4717 | Cite as

Silicon-to-indium tin oxide coated glass bonding for packaging of field emission arrays fabricated on silicon wafer

  • W. B. Choi
  • B. K. Ju
  • Y. H. Lee
  • M. H. Oh
  • N. Y. Lee
  • M. Y. Sung


A silicon-to-In2O3:Sn coated glass bonding has been developed for the package of field emission arrays fabricated on the silicon wafer, utilizing a conventional silicon-to- silicon anodic bonding using the glass layer. A 1.8 μm Pyrex #7740 glass layer was deposited on the In2O3:Sn coated glass by an electron beam evaporation. It was confirmed that the composition of the glass layer was nearly the same as that of the bulk Pyrex #7740 glass plate. In this work, bonding the silicon and In2O3:Sn coated glass was achieved at a temperature of 190 °C with an applied voltage of 60 Vdc. A secondary ion mass spectroscopy analysis was used to confirm the modeled bonding kinetics of the silicon-to-In2O3:Sn coated glass.


Electron Beam Applied Voltage Silicon Wafer Glass Plate In2O3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Puers, E. Peeters, A. Bossche and W. Sansen, Sensors and Actuators A21–23 (1990) 108.Google Scholar
  2. 2.
    J. Berenschot, J. Gradeniers, T. Lammerink and M. Elwenspoek, ibid. A41/42 (1994) 338.Google Scholar
  3. 3.
    L. J. Spangler and K. D. Wise, IEEE Electron Device Lett. EDL-8 (1987) 137.Google Scholar
  4. 4.
    T. R. Anthony, J. Appl. Phys. 54 (1983) 2419.Google Scholar
  5. 5.
    M. Nese and A. Hannebor, Sensors and Actuators A37/38 (1993) 61.Google Scholar
  6. 6.
    A. Hanneborg, M. Nese and P. øhlcker,J. Micromech. Microeng. 1 (1991) 139.Google Scholar
  7. 7.
    B. Ziaie, J. V. Arx, R. Dokmeci and K. Naiafi, J. Microelectromechanical System 5 (1996) 166.Google Scholar
  8. 8.
    A. Cozma and B. Puers, J. Micromech. Microeng. 5 (1995) 98.Google Scholar
  9. 9.
    L. M. Roylance and J. B. Angell, IEEE Trans. Electron Devices ED-26 (1979) 1911.Google Scholar
  10. 10.
    G. Wallis and D. I. Pomerantz, J. Appl. Phys. 40 (1969) 3946.Google Scholar
  11. 11.
    A. A. Brooks and R. P. Donovan, J. Electrochem. Soc. 119 (1972) 545.Google Scholar
  12. 12.
    G. Wallis, J. Electrocomponent Sci. Technol. 2 (1975) 45.Google Scholar
  13. 13.
    Y. Kanda, K. Matsuda, C. Murayama and J. Sugaya, Sensors and Actuators A21–23 (1990) 939.Google Scholar
  14. 14.
    M. Esashi, A. Nakano, S. Shoji and H. Hebiguchi, ibid. A21–23 (1990) 931.Google Scholar
  15. 15.
    L. Branst and F. Pothoven, Semiconductor International, January (1996) 109.Google Scholar
  16. 16.
    C. A. Spindt, C. E. Holland, A. Rosengreen and I. Brodie, IEEE Trans. Electron Devices ED-38 (1991) 2355.Google Scholar
  17. 17.
    P. H. Holloway, J. Sebastain, T. Trottier, H. Swartand and R. O. Petersen, IEEE Solid State Technology, August (1995) 47.Google Scholar
  18. 18.
    H. K. Pulker, "Coatings on Glass" (Elsevier, Amsterdam, 1996) p. 13.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • W. B. Choi
    • 1
  • B. K. Ju
    • 1
  • Y. H. Lee
    • 1
  • M. H. Oh
    • 1
  • N. Y. Lee
    • 2
  • M. Y. Sung
    • 3
  1. 1.Electronic Materials and Devices Research CenterKorea Institute of Science and TechnologyCheongryang, SeoulKorea
  2. 2.Orion Electric Co.Information Display Research InstituteSuwonKorea
  3. 3.Department of Electrical EngineeringKorea UniversitySungbuk-Ku, SeoulKorea

Personalised recommendations