Advertisement

Journal of Materials Science

, Volume 34, Issue 19, pp 4793–4802 | Cite as

X-ray diffraction characterisation of low temperature plasma nitrided austenitic stainless steels

  • Y. SunEmail author
  • X. Y. Li
  • T. Bell
Article

Abstract

The nitrided layers produced by low temperature (400–500 °C) plasma nitriding on austenitic stainless steels, AISI 316, 304 and 321, have been characterised by X-ray diffraction, in conjunction with metallographic and chemical composition profile analysis. The thin, hard and corrosion resistant layers exhibited similar X-ray diffraction patterns, but the positions of the major diffraction peaks varied with nitriding temperature and nitrogen concentration profile. The low temperature nitrided layers are predominantly composed of a phase with a face centred cubic (fcc) structure, which is named “S” phase. However, the positions of the diffraction peaks from the “S” phase deviated in a systematic way from those for an ideal fcc lattice. Detailed analysis of the deviation suggested that very high compressive residual stresses and stacking faults were formed in the layers, resulting in a highly distorted and disordered fcc structure. The lattice parameter of the distorted and disordered “S” phase was found to increase with increasing nitrogen concentration.

Keywords

Residual Stress Nitrogen Concentration Austenitic Stainless Steel Compressive Residual Stress Nitrided Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Bell and Y. Sun, in Proc. Int. Conf. Surf. Sci. & Eng., edited by Zhu Rhizang, Beijing, May 15–19, 1995 (Int. Academic Publishers, Beijing, 1995) p. 9.Google Scholar
  2. 2.
    B. Billon and A. Hendry, Surf. Eng. 1(2) (1985) 114.Google Scholar
  3. 3.
    E. Rolinski, ibid. 3(1) (1987) 35.Google Scholar
  4. 4.
    Z. L. Zhang and T. Bell, ibid. 1(2) (1985) 131.Google Scholar
  5. 5.
    K. Ichii and K. Fujimura, edited by E. Broszeit, W. D. Munz, H. Oechsner, K. T. Rie and G. K. Wolf in “Plasma Surface Engineering,” Vol. 2 (DGM Informationgesellschaft mbH, Oberursel, 1989) p. 1187.Google Scholar
  6. 6.
    P. A. Dearnley, A. Namver, G. G. A. Hibberd and T. Bell, Plasma-Surface Engineering, Vol. 1, p. 219.Google Scholar
  7. 7.
    K. Gemma, Y. Satoh, I. Ushioku and M. Kawakami, Surf. Eng. 11(3) (1995) 240.Google Scholar
  8. 8.
    M. Samandi, B. A. Shedden, T. Bell, G. A. Collins, R. Hutchings and J. Tendys, J. Vac. Sci. Technol. B12(2) (1994) 935.Google Scholar
  9. 9.
    E. Menthe, K-T. Rie, J. W. Schultze and S. Simson, Surf. Coat. Tech. 74/75 (1995) 412.Google Scholar
  10. 10.
    K. Ichii, K. Fujimura and T. Takase, Techn. Rep. Kansai Univ. 27 (1986) 135.Google Scholar
  11. 11.
    T. Roux, A. Saker, C. Leroy, C. Frantz and H. Michel, in Proc. 9th Int. Congr. Heat. Treat. Surf. Eng., IFHT'94, Nice, France, 1994, p. 291.Google Scholar
  12. 12.
    M. Samandi, Surf. Eng. 11(2) (1995) 156.Google Scholar
  13. 13.
    T. Bell and Y. Sun, in “Heat Treatment & Surface Engineering Characterisation & Analytical Methods,” Proc. 5th Int. Sem. Heat Treat. Surf. Eng., IFHT, edited by M. Salehi (Isfahan, Eran, 1995) p. 21.Google Scholar
  14. 14.
    E. J. Mittemeijer, J. Metals 37(9) (1985) 16.Google Scholar
  15. 15.
    S. R. Goodman and Hsun hu, Trans. Met. Soc. AIME 230 (1964) 1413.Google Scholar
  16. 16.
    S. V. Nagender naidu and Trilok singh, Wear 166 (1993) 141.Google Scholar
  17. 17.
    C. N. J. Wagner, J. P. Boisseau and E. N. Aqua, Trans. Met. Soc. AIME 233 (1965) 1280.Google Scholar
  18. 18.
    C. S. Barrett, Trans. AIME, J. Metals 188 (1950) 123.Google Scholar
  19. 19.
    M. S. Paterson, J. Appl. Physics 23 (1952) 805.Google Scholar
  20. 20.
    B. E. Warren, Progr. Metal Phys. 8 (1959) 147.Google Scholar
  21. 21.
    K. Salmutter and F. Stangler, Z. Metallk. 51 (1960) 544.Google Scholar
  22. 22.
    R. E. Schramm and R. P. Reed, Metall. Trans. 6A (1975) 1345.Google Scholar
  23. 23.
    X. Y. Li and Y. Sun, unpublished work, 1997.Google Scholar
  24. 24.
    S. P. Hannula, P. Nenonen and J. Malarius, in “High Nitrogen Steels,” edited by J. Foct and A. Hendry (The Institute of Metals, London, 1989) p. 266.Google Scholar
  25. 25.
    X. Y. Li, M. Phil Thesis, The University of Birmingham, 1997.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  1. 1.School of Metallurgy and MaterialsUniversity of BirminghamBirminghamUK

Personalised recommendations