Journal of Materials Science

, Volume 34, Issue 19, pp 4645–4652 | Cite as

Fatigue crack propagation in aluminum nitride ceramics under cyclic compression

  • G. Subhash
  • S. M. Beesley
  • R. K. Govila
  • W. Rafaniello


Room temperature fatigue crack growth characteristics under cyclic compressive loads were investigated in pure and 3 wt % yttria doped hot pressed aluminum nitride ceramics. A single edge-notch specimen geometry was used to induce a stable Mode I fatigue crack under cyclic compressive loads. The fatigue crack growth occurred in three stages, where the first stage is dominated by microcrack nucleation, coalescence and slow growth within the notch root. During the second stage, the crack growth is accelerated and finally, the crack growth deceleration and arrest occurred in third stage. The fatigue crack growth occurred predominantly by intergranular fracture. Insights gained from the experimental results and microscopic observations are discussed.


Fatigue Crack Yttria Fatigue Crack Growth Fatigue Crack Propagation Intergranular Fracture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. A. Janeway, Ceramic Industry (October, 1990) 28.Google Scholar
  2. 2.
    T. J. Mroz, Jr., Ceramic Bulletin 71(5) (1992) 782.Google Scholar
  3. 3.
    G. Subhash and G. Ravichandran, J. Mater. Sci. 33 (1998) 1933.Google Scholar
  4. 4.
    W. Chen and G. Ravichandran, J. Amer. Ceram. Soc. 79(3) (1996) 579.Google Scholar
  5. 5.
    R. N. Katz, G. Wechsler, H. Toutanji, D. Friel, G. Leatherman, T. Elkorchi and W. Rafaniello, Ceramic Engieenring & Science Proceedings 14(7/8) (1993) 282.Google Scholar
  6. 6.
    I. Masson, J. P. Feiereisen, J. P. Michel, A. George, A. Mocellin and P. Blumenfeld, J. Eur.Ceram. Soc. 13 (1994) 355.Google Scholar
  7. 7.
    H. C. Heard and C. F. Cline, J. Mater. Sci. 15 (1980) 1889.Google Scholar
  8. 8.
    W. H. Goudin and S. L. Weinland, J. Amer. Ceram. Soc. 68 (1985) 674.Google Scholar
  9. 9.
    D. J. Steinberg, Journal De Physique IV, Colloque C3, Suppl an Journal De Physique III 1(10) (1991) C3 837–C3 842.Google Scholar
  10. 10.
    F. P. Skeele, M. J. Slavin and R. N. Katz, in “Ceramic Materials and Components for Engines,” edited by V. J. Tennery (Amer. Ceram. Soc., 1989) p. 710.Google Scholar
  11. 11.
    S. R. Witek, G. A. Miller and M. P. Harmer, J. Amer. Ceram. Soc. 72(3) (1989) 469.Google Scholar
  12. 12.
    G. De with and N. Hattu, J. Mater. Sci. 18(1983) 503.Google Scholar
  13. 13.
    C. K. Unni and D. E. Gordon, ibid. 30 (1995) 1173–1179.Google Scholar
  14. 14.
    L. Ewart and S. Suresh, ibid 22 (1987) 1173.Google Scholar
  15. 15.
    Idem., ibid 5 (1986) 774.Google Scholar
  16. 16.
    T. Ohji, Y. Yamauchi, W. Kanematsu and S. Ito, Journal of the Ceramic Society of Japan, International Edition98 (1990) 4.Google Scholar
  17. 17.
    M. J. Reese, F. Guiu and M. F. R. Sammur, J. Amer. Ceram. Soc. 72 (1989) 348.Google Scholar
  18. 18.
    R. H. Dauskardt, W. Yu and R. O. Ritchie, ibid. 73(1990) 893.Google Scholar
  19. 19.
    T. Kawakubo and K. Komeya, ibid. 79 (1987) 400.Google Scholar
  20. 20.
    S. Y. Liu and I. W. Chen, ibid. 74 (1991) 1197.Google Scholar
  21. 21.
    Idem., ibid. 74 (1991) 1206.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • G. Subhash
    • 1
  • S. M. Beesley
    • 1
  • R. K. Govila
    • 2
  • W. Rafaniello
    • 3
  1. 1.Mechanical Engineering-Engineering Mechanics DepartmentMichigan Technological UniversityHoughton
  2. 2.Scientific Research LaboratoriesFord Motor CompanyDearborn
  3. 3.Ceramics and Advanced MaterialsThe Dow Chemical CompanyMidland

Personalised recommendations