Journal of Materials Science

, Volume 34, Issue 19, pp 4639–4644 | Cite as

Formation region of monophase with cubic spinel-type oxides in Mn–Co–Ni ternary system

  • Y. Abe
  • T. Meguro
  • S. Oyamatsu
  • T. Yokoyama
  • K. Komeya


This study was performed to find the composition area of cubic spinel-type monophase oxides composed of the Mn–Co–Ni ternary system. Starting materials were prepared by mixing Mn, Co, and Ni nitrates then evaporating to dryness. Each starting oxide was fired at 700, 800, 900, 1000, and 1100 °C in air. The regions of cubic spinel monophase (CSM) were confirmed to spread with decreasing firing temperatures. The region of CSM at 1000 °C was seen near the line connecting the points of Mn : Co : Ni = 2 : 4 : 0 and 4.5 : 0 : 1.5. The area at 800 °C spread toward Co and Ni, as compared to the results at 1000 °C. In the region containing more Mn above the area of CSM at 800 °C, the phase had tetragonal spinel or α-Mn2O3 besides cubic spinel structure. Below this area, the phase contained rock-salt-type crystal besides cubic spinel structure. This tendency at 1000 °C was the same as that at 800 °C.


Oxide Polymer Nitrate Ternary System Spinel Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Meguro, T. Sasamoto, T. Yokoyama, K. Shiraishi, Y. Abe and N. Torikai, J. Ceram. Soc. Jpn. 96(1988) 334.Google Scholar
  2. 2.
    T. Yokoyama, T. Meguro, T. Sasamoto, S. Yamada, Y. Abe and N. Torikai, ibid. 96 (1988) 967.Google Scholar
  3. 3.
    T. Meguro, T. Yokoyama and K. Komeya, J. Mater.Sci. 27 (1992) 5529.Google Scholar
  4. 4.
    T. Yokoyama, K. Kondo, K. Komeya, T. Meguro, Y. Abe and T. Sasamoto, ibid. 30 (1995) 1845.Google Scholar
  5. 5.
    T. Yokoyama, Y. Abe, T. Meguro, K. Komeya, K. Kondo, S. Kanekoand T. Sasamoto, Jpn. J. Appl.Phys. 35 (1996) 5775.Google Scholar
  6. 6.
    L. V. Az ´aroff and M. J. Buerger, “The Powder Method in X-ray Crystallography” (McGraw-Hill, New York, 1958) p. 181.Google Scholar
  7. 7.
    E. Aukrust and A. Muan, Trans. Metallurgical Soc. AIME 230 (1964) 378.Google Scholar
  8. 8.
    E. M. Levin, C. R. Robbinsand H. F. Mcmurdie, “Phase Diagrams for Ceramists,” Vol. II (edited and published by Amer. Ceram. Soc., OH, 1969) p. 22.Google Scholar
  9. 9.
    R. J. Moore and J. White, J. Mater. Sci. 9 (1974) 1393.Google Scholar
  10. 10.
    R. S. Poth, T. Negas and L. P. Cook, “Phase Diagrams for Ceramists,” Vol. IV, edited by G. Smith (Amer. Ceram. Soc., OH, 1981) p. 30.Google Scholar
  11. 11.
    J. L. M. De vidales, E. Vila, R. M. Rojas and O. Garcia martinez, Chem. Mater. 7 (1995) 1716.Google Scholar
  12. 12.
    J. D. Dunitz and L. E. Orgel, J. Phys. Chem. Solids 3 (1957) 20.Google Scholar
  13. 13.
    P. J. Wojtowicz, Phys. Rev.116 (1959) 32.Google Scholar
  14. 14.
    T. Yokoyama, T. Meguro and K. Komeya, J. Mater. Sci. Soc. Jpn. 33 (1996) 19.Google Scholar
  15. 15.
    L. V. Az ´aroff, Z. KRISTALLOGR. B112 (1959) 33.Google Scholar
  16. 16.
    N. Baffier and M. Huber, J. Phys. Chem. Solids 33 (1972) 737.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Y. Abe
    • 1
  • T. Meguro
    • 2
  • S. Oyamatsu
    • 2
  • T. Yokoyama
    • 2
  • K. Komeya
    • 2
  1. 1.Technol Seven Co., Ltd.Yokohama-shiJapan
  2. 2.Yokohama National UniversityYokohama-shiJapan

Personalised recommendations