Advertisement

Journal of Materials Science

, Volume 34, Issue 19, pp 4751–4759 | Cite as

Ductile fracture mechanisms in shielded metal-arc and gas tungsten-arc welds of Type 347 stainless steels

  • Yong Jun Oh
  • Bong Sang Lee
  • Sang Chul Kwon
  • Jun Hwa Hong
Article

Abstract

The ductile fracture behavior of two different welds of Type 347 stainless steel, which are made by SMAW (shielded metal arc welding) and GTAW (gas tungsten arc welding) processes was characterized by J-integral testing and microstructural evaluation techniques. Both welds by SMAW and GTAW processes showed significantly low fracture toughness compared with that of the base metal. Metallographic and fractographic examinations revealed that different micromechanisms are operative in the fracture process of the two welds. In the SMAW weld, the fracture was dominated by void initiation and growth at the inclusions that are homogeneously distributed in the matrix. On the other hand, in the GTAW weld, a large number of Nb(CN) particles precipitated on the austenite/ferrite interface as long rod shapes and the fracture proceeded by void initiation at these particles and accompanying decohesion of the interface. It is recommended that the C and Nb contents be reduced in weld metal itself as well and that the welding atmosphere be controlled.

Keywords

Welding Fracture Toughness Ductile Fracture GTAW SMAW 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. J. Mills, Eng. Fracture Mechanics 30 (1988) 469.Google Scholar
  2. 2.
    W. H. Bamford and A. J. Bush, ASTM STP 668 (1979) 553.Google Scholar
  3. 3.
    M. F. Kanninen, A. Zahoor, G. Wilkowski, I. Abou-sayed, C. Marshall, D. Broak, S. Sampath, H. Rhee and J. Ahmad, EPRI NP-2347, Battelle Columbus Laboratories, Columbus, OH, 1982.Google Scholar
  4. 4.
    G. M. Wilkowski, A. Zahoor and M. F. Kanninen, J. Press. Vess. Technol. 103 (1981) 359.Google Scholar
  5. 5.
    C. G. Chipperfield, Int. J. Fracture 12 (1976) 873.Google Scholar
  6. 6.
    K. Yoshida, M. Kojima, M. Iida and I. Takahashi, Int. J. Pres. Ves. and Piping 43 (1990) 273.Google Scholar
  7. 7.
    J. D. Landes and D. F. Mccabe, EPRI NP-4768 (1986).Google Scholar
  8. 8.
    P. Balladon and J. Heritier, ASTM STP 905 (1986) 661.Google Scholar
  9. 9.
    C. G. Chipperfield, I. Mech. Eng. (1978) 145.Google Scholar
  10. 10.
    P. Balladon, J. Heritier and P. Rabbe, ASTM STP 791 (1983) II-496.Google Scholar
  11. 11.
    T. C. Miller and T. L. Anderson, ASTM STP 1207 (1994) 87.Google Scholar
  12. 12.
    T. P. Magee and Hoffmann, ASME (1995) 267.Google Scholar
  13. 13.
    N. Suutala, T. Takalo and T. Moisio, Metall. Trans. 11A (1980) 717.Google Scholar
  14. 14.
    J. A. Brooks, J. C. Williams and A. W. Tompson, ibid. 14A (1983) 23.Google Scholar
  15. 15.
    O. Hammer and U. Svensson, “Solidification and Casting of Metals” (Metal Society, London, 1979) p. 362s.Google Scholar
  16. 16.
    Y. Song, T. N. Baker and N. A. Mcpherson, Mater. Sci. Eng. A212 (1996) 228.Google Scholar
  17. 17.
    W. J. Liu and J. J. Jonas, Metall. Trans. 19A (1988) 1415.Google Scholar
  18. 18.
    J. M. Silcock, Acta Metall. 14 (1966) 687.Google Scholar
  19. 19.
    R. Ayer, C. F. Klein and C. N. Marzinsky, Metall. Trans. 23A (1992) 2455.Google Scholar
  20. 20.
    M. Erve, U. Wessling, R. Kilian, R. Hardt, G. Brummer, V. Maier and U. Ilg, Nucl. Eng. and Design 171 (1997) 113.Google Scholar
  21. 21.
    J. R. Rice and D. M. Tracey, J. of the Mechanics and Physics of Solid 17 (1969) 201.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Yong Jun Oh
    • 1
  • Bong Sang Lee
    • 1
  • Sang Chul Kwon
    • 1
  • Jun Hwa Hong
    • 1
  1. 1.Reactor Materials DepartmentKorea Atomic Energy Research InstituteYusong, TaejonKorea

Personalised recommendations