Journal of Statistical Physics

, Volume 94, Issue 3–4, pp 603–618 | Cite as

On the Rate of Entropy Production for the Boltzmann Equation

  • Alexander V. Bobylev
  • Carlo Cercignani
Article
  • 137 Downloads

Abstract

We show that there exists a wide class of distribution functions (with moments of any order as close to their equilibrium values as we like) which can provide an abnormally low rate of entropy production. The result is valid for the Boltzmann equation with any cross section σ(|V|, θ) satisfying a mild restriction. The functions are constructed in an explicit form and we discuss some applications of our results.

entropy production Boltzmann equation kinetic theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    L. Arkeryd, L -estimates for the space homogeneous Boltzmann equation, J. Statist. Phys. 31:347–361 (1982).Google Scholar
  2. 2.
    A. V. Bobylev, Exact solutions of the Boltzmann equation and the theory of relaxation of Maxwell gas, USSR Theor. Math. Phys. 60:280–310 (1984).Google Scholar
  3. 3.
    A. V. Bobylev, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwellian molecules, Soviet Scient. Rev. c 7:111–233 (1988).Google Scholar
  4. 4.
    E. A. Carlen and M. C. Carvalho, Entropy production estimates for Boltzmann equations with physically realistic collision kernels, J. Statist. Phys. 74:743–782 (1994).Google Scholar
  5. 5.
    L. Desvillettes, Some applications of the method of moments for the homogeneous Boltzmann and Kaç equations, Arch. Rational Mech. Anal. 123:387 (1993).Google Scholar
  6. 6.
    B. Wennberg, On moments and uniqueness for solutions to the space homogeneous Boltzmann equation, Transport Theory Stat. Phys. 23(4):533–539 (1994).Google Scholar
  7. 7.
    B. Wennberg, Entropy dissipation and moment production for the Boltzmann equation, J. Statist. Phys. 86:1053–1066 (1997).Google Scholar
  8. 8.
    C. Cercignani, R. Illner, and M. Pulvirenti, The Mathematical Theory of Dilute Gases (Springer, New York, 1994).Google Scholar
  9. 9.
    C. Cercignani, The Boltzmann Equation and Its Applications (Springer-Verlag, New York, 1988)Google Scholar
  10. 10.
    C. Cercignani, H-theorem and trend to equilibrium in the kinetic theory of gases, Arch. Mech. 34:231–241 (1982).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • Alexander V. Bobylev
    • 1
  • Carlo Cercignani
    • 2
  1. 1.Keldish Institute of Applied MathematicsMoscowRussia
  2. 2.Dipartimento di Matematica, Politecnico di MilanoMilanItaly

Personalised recommendations