Skip to main content
Log in

Kinetics of direct nitridation of pelletized silicon grains in a fluidized bed: experiment, mechanism and modelling

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A fluidized-bed nitridation of pelletized silicon grains having a wide size distribution was carried out in the temperature range 1200–1300°C under conditions free of external heat and mass transfer effects. N2(30%–90%)–H2(5%–50%)–Ar (balance) mixtures were used as the nitriding gas at atmospheric pressure. Both the yield of α-Si3N4 and the final overall conversion of silicon are affected by temperature and nitrogen gas concentration in a nitriding atmosphere, but hydrogen gas has a minor effect on either of these. After accounting for some of the structural changes that occur during nitridation, a simple model was derived. The model has shown that the pseudo-asymptotic exponential conversion trend in the second nitridation stage could be explained by various reaction mechanisms, adjusted for properties of the size distribution of silicon grains and the experimentally observed spalling of the product scale from the silicon surface. In the investigated range of experimental conditions, nitridation could be considered as having an apparent activation energy of Eapp≈340 kJ mol-1. © 1998 Chapman & Hall

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. F. Lange, J. Am. Ceram. Soc. 62 (1979) 428.

    Google Scholar 

  2. W. H. Rhodes and S. Natansohn, Ceram. Bull. 68 (1989) 1804.

    Google Scholar 

  3. T. Yamada, Am. Ceram. Soc. Bull. 72(5) (1993) 99.

    Google Scholar 

  4. F. K. Dijen, A. Kerber, U. Vogt, W. Pfeiffer and M. Schulze, “Key Engineering Materials 89–91” (Trans. Tech. Publications, Switzerland, 1994) p. 19.

    Google Scholar 

  5. Dong-Duk Lee, S. L. Kang, G. Petzow and D. N. Yoon, J. Am. Ceram. Soc. 73 (1990) 767.

    Google Scholar 

  6. G. Hillinger and V. Hlavacek, Interceram. 43 (1994) 333.

    Google Scholar 

  7. R. A. L. Drew, Cerâmica 35 (237) (1989) 129.

    Google Scholar 

  8. F. Cambier and A. Leriche, in “The Physics and Chemistry of Carbides; Nitrides and Borides”, edited by R. Freer (Kluwer Academic, The Netherlands, 1990) pp. 13–28.

    Google Scholar 

  9. D. Geldart, Chem. Eng. Sci. 39 (1984) 1481.

    Google Scholar 

  10. D. Kunii and O. Levenspiel, “Fluidization Engineering”, 2nd Edn (Butterworth—Heinemann, Boston, 1991).

    Google Scholar 

  11. M. Shimizu, European Pat. Applic. no. 90 114 382.6 (1991).

  12. M. Shimizu, H. Fukuoka and M. Fukuhira, US Pat. no. 5073 385 (1991).

  13. H. Fukuoka, M. Shimizu, H. Ochiai, H. Shimizu and M. Fukuhira, US Pat. no. 5232 677 (1993).

  14. P. E. D. Morgan, J. Mater. Sci. 15 (1980) 791.

    Google Scholar 

  15. M. Barsoum, P. Kangutkar and M. J. Koczak, J. Am. Ceram. Soc. 74 (1991) 1248.

    Google Scholar 

  16. R. G. Pigeon, A. Varma and A. E. Miller, J. Mater. Sci. 28 (1993) 1919.

    Google Scholar 

  17. M. W. Lindley, D. P. Elias, B. F. Jones and K. C. Pitman, ibid. 14 (1979) 70.

    Google Scholar 

  18. H. Dervisbegovic and F. L. Riley, ibid. 16 (1981) 1945.

    Google Scholar 

  19. W. M. Dawson and A. J. Moulson, ibid. 13 (1978) 2289.

    Google Scholar 

  20. T. Itoh, J. Mater. Sci. Lett. 10 (1991) 19.

    Google Scholar 

  21. H. M. Jennings, J. Mater. Sci. 18 (1983) 951.

    Google Scholar 

  22. Z. R. Jovanovics, S. Kimura and O. Levenspiel, J. Am. Ceram. Soc. 77 (1994) 186.

    Google Scholar 

  23. D. Campos-Loriz and F. L. Riley, J. Mater. Sic. 13 (1978) 1125.

    Google Scholar 

  24. A. Atkinson, A. J. Moulson and E. W. Robert, J. Am. Ceram. Soc. 59 (1976) 285.

    Google Scholar 

  25. H. Dervisbegovic and F. L. Riley, J. Mater. Sci. 14 (1979) 1265.

    Google Scholar 

  26. H. M. Jennings, B. J. Dagleish and P. L. Pratt, ibid. 23 (1988) 2573.

    Google Scholar 

  27. D. S. Thompson and P. L. Pratt, in “Science of Ceramics”, Vol. 3, edited by G. H. Stewart (Academic Press, New York, 1967) p. 33.

    Google Scholar 

  28. Y. Inomata, J. Ceram. Soc. Jpn 83 (1975) 497.

    Google Scholar 

  29. Y. Inomata and Y. Uemura, ibid. 83 (1975) 244.

    Google Scholar 

  30. J. Koike and S. Kimura, J. Am. Ceram. Soc. 79 (1996) 365.

    Google Scholar 

  31. M. N. Rahaman and A. J. Moulson, J. Mater. Sci. 19 (1984) 189.

    Google Scholar 

  32. B. Myhre and K. Motzfeldt, in “The Physics and Chemistry of Carbides; Nitrides and Borides”, edited by R. Freer (Kluwer Academic, The Netherlands, 1990) p. 29.

    Google Scholar 

  33. B. W. Sheldon. J. Szekely and J. S. Hagerty, J. Am. Ceram. Soc. 75 (1992) 677.

    Google Scholar 

  34. Y. D. Liu and S. Kimura, Powder Technol. 75 (1993) 189.

    Google Scholar 

  35. Z. R. Jovanovic, PhD dissertation, Oregon State University, Corvallis, OR, USA (1994).

    Google Scholar 

  36. Z. R. Jovanovic and S. Kimura, J. Am. Ceram. Soc. 77 (1994) 2226.

    Google Scholar 

  37. R. G. Pigeon and A. Varma, J. Mater. Sci. 28 (1993) 2999.

    Google Scholar 

  38. W. Ku, O. Gregory and H. M. Jennings, J. Am. Ceram. Soc. 73 (1990) 286.

    Google Scholar 

  39. J. Szekely, J. W. Evans and H. Y. Sohn, “Gas-Solid Reactions” (Academic Press, New York, 1976).

    Google Scholar 

  40. J. Heinrich, Eur. Space Agency Report no. N–81–22113, December 1990.

  41. N. J. Shaw and F. J. Zeleznik, Commun. Am. Ceram. Soc. 65 (1982) C-180.

    Google Scholar 

  42. J. Heinrich and G. Streb, J. Mater. Sci. 14 (1979) 2083.

    Google Scholar 

  43. S. Kimura, personal communication, Chemical Engineering Department, Oregon State University, Corvallis, OR 97331, USA (1995).

  44. I. J. R. Baumvol, F. C. Stedile, J. J. Ganem, S. Rigo and I. Trimaille, J. Electrochem. Soc. 142 (1995) 1205.

    Google Scholar 

  45. K. Kijima, and S. Shirsaki, J. Chem. Phys. 65 (1976) 2668.

    Google Scholar 

  46. J. W. Christian, in “The Theory of Transformations in Metals and Alloys; Part I-Equilibrium and General Kinetic Theory”, 2nd Edn (Pergamon Press, Oxford, 1975) pp. 410–17.

    Google Scholar 

  47. R. M. Barrer, “Dissusion in and through Solids” (Cambridge University Press, Cambridge, 1951).

    Google Scholar 

  48. S. M. Sze, “Physics of Semiconductor Devices” (Wiley, New York, 1981).

    Google Scholar 

  49. A. F. Wells, “Structural Inorganic Chemistry”, 3rd Edn (Oxford University Press, New York, 1962).

    Google Scholar 

  50. A. T. Fromhold Jr, in “Defects in Crystalline Solids: Fundamentals”, Vol. 9, edited by S. Amelinckx, R. Gevers and J. Nihoul (North-Holland, Amsterdam, New York, Oxford, 1976) p. 28.

    Google Scholar 

  51. Y. Hayafuji and K. Kajiwara, J. Electrochem. Soc. Solid State Sci. Technol. 129 (1982) 2102.

    Google Scholar 

  52. O. Kubaschewski and B. E. Hopkins, “Oxidation of Metals and Alloys”, 2nd Edn (Butterworths, London, 1962).

    Google Scholar 

  53. M. I. Mendelson, J. Mater. Sci. 14 (1979) 1752.

    Google Scholar 

  54. H. M. Jennings and M. H. Richman, ibid. 11 (1976) 2087.

    Google Scholar 

  55. U. R. Evans, “The Corrosion and Oxidation of Metals: Scientific Principles and Practical Applications” (Edward Arnold, London, 1967).

    Google Scholar 

  56. G. A. Rossetti Jr and R. P. Denkewicz Jr, J. Mater. Sci. 24 (1989) 3081.

    Google Scholar 

  57. S. Yagi and D. Kunii, in “Proceedings of the Fifth International Symposium on Combustion (1955)” (Van Nostrand Reinhold, New York, 1955) p. 231.

    Google Scholar 

  58. G. Valensi, Comput. Rend. 202 (1936) 309.

    Google Scholar 

  59. R. E. Carter, J. Chem. Phys. 34 (1961) 2010.

    Google Scholar 

  60. Z. R. Jovanovic, J. Mater. Sci. Lett. 14 (1995) 1263.

    Google Scholar 

  61. PSI-PLOT, “Technical Plotting and Data Processing” (Poly Software International Ltd, Salt Lake City, 1993).

    Google Scholar 

  62. O. Levenspiel, “The Chemical Reactor Omnibook” (OSU Book Stores, Corvallis, OR 97331, 1993).

    Google Scholar 

  63. S. Kimura, Y. Takagi, S. Tone and T. Otake, J. Chem. Eng. Jpn 16 (3) (1983) 217.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jovanovic, Z.R. Kinetics of direct nitridation of pelletized silicon grains in a fluidized bed: experiment, mechanism and modelling. Journal of Materials Science 33, 2339–2355 (1998). https://doi.org/10.1023/A:1004395506202

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004395506202

Keywords

Navigation