Skip to main content
Log in

Using size distributions to detect nutrient and sediment effects within and between habitats

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We studied the use of size distributions as a response variable in limnological experiments. Previous quantifications of size distributions were incomplete or difficult to use in experimental settings, and we developed a multivariate approach that more fully describes the shape and biomass of planktonic and benthic size distributions. We re-evaluate the hypothesis that fish affect the shape and nutrients affect the biomass of size distributions, and show that the multivariate approach is more responsive to detecting treatment effects. In a mesocosm experiment, we use this new quantification and analysis of size distributions to detect the main and interactive effects of nutrient addition and sediment type on both benthic and pelagic size distributions. Size distributions in both habitats responded to the nutrient and sediment treatments, indicating linkage since a treatment applied in one habitat affected the size distribution in the opposite habitat. Since size distributions reduce each habitat into a common currency, we were able to examine the nature of the linkage. The relative response of each habitat to the nutrient treatment was different with regard to the shape of the distributions, while the relative response to the sediment treatment was different with regard to the biomass in the distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahrens, M. A. & R. H. Peters, 1991. Patterns and limitations in limnoplankton size spectra. Can. J. Fish. aquat. Sci. 48: 1967–1978.

    Google Scholar 

  • Almond, M. J. R., E. Bentzen & W. D. Taylor, 1996. Size structure and species composition of plankton communities in deep Ontario lakes with and without Mysis relicta and planktivorous fish. Can. J. Fish. aquat. Sci. 53: 315–325.

    Google Scholar 

  • APHA, 1995. Standard Methods for the Examination of Water and Wastewater. 19th edn. In Eaton, A.D., L. S. Clesceri & A. E. Greenberg (eds), Washington, DC: 4.106-4.116 Baca, R. M., 1998. The use of size distributions in ecological experiments. PhD dissertation, University of Mississippi; 168 pp.

  • Bak, R. P. M. & E. H. Meesters, 1998. Coral population structure: the hidden information of colony size-frequency distributions. Mar. Ecol. Prog. Ser. 162: 301–306.

    Google Scholar 

  • Bock, R. D., 1975. Multivariate Statistical Methods in Behavioral Research, McGraw-Hill, New York, 623 pp.

    Google Scholar 

  • Cattaneo, A., 1993. Size spectra of benthic communities in Laurentain Streams. Can. J. Fish. aquat. Sci. 50: 2659–2666.

    Google Scholar 

  • Cuker, B. E., P. T. Gama & J. M. Burkholder, 1990. Type of suspended clay influences lake productivity and phytoplankton community response to phosphorus loading. Limnol. Oceanogr. 35: 830–839.

    Google Scholar 

  • Cuker, B. E. & L. Hudson, Jr., 1992. Type of suspended clay in-fluences zooplankton response to phosphorus loading. Limnol. Oceanogr. 37: 566–576.

    Google Scholar 

  • Drenner, R. W. & J. D. Smith, 1991. Biomass-dependent effects of mosquitofish on zooplankton, chlorophyll and the size distribution of particulate phosphorus. Verh. int. Ver. Limnol. 24: 2382–2386.

    Google Scholar 

  • Drenner, R. W., S. T. Threlkeld & M. D. McCracken, 1986. Experimental analysis of the direct and indirect effects of an omnivorous filter-feeding clupeid on plankton community structure. Can. J. Fish. aquat. Sci. 43: 1935–1945.

    Google Scholar 

  • Drenner, R. W., S. T. Threlkeld, J. D. Smith, J. R. Mummert & P. A. Cantrell, 1989. Interdependence of phosphorus, fish, and site effects on phytoplankton biomass and zooplankton. Limnol. Oceanogr. 34: 1315–1321.

    Google Scholar 

  • Duplisea, D. E., S. R. Kerr & L. M. Dickie, 1997. Demersal fish biomass size spectra on the Scotian Shelf, Canada: species replacement at the shelfwide scale. Can. J. Fish. aquat. Sci. 54, 1725–1735.

    Google Scholar 

  • Gaedke, U., 1992. The size distribution of plankton biomass in a large lake and its seasonal variability. Limnol. Oceanogr. 37: 1202–1220.

    Google Scholar 

  • García, C.M., F. Echevarría & F.X. Niell, 1995. Size structure of plankton in a temporary, saline inland lake. J. Plankton Res. 17: 1803–1817.

    Google Scholar 

  • Gerlach, S. A., A. E. Hahn & M. Schrage, 1985. Size spectra of benthic biomass and metabolism. Mar. Ecol. Prog. Ser. 26: 161–173.

    Google Scholar 

  • Kirk, K. L. & J. J. Gilbert, 1990. Suspended clay and the population dynamics of planktonic rotifers and cladocerans. Ecology 71: 1741–1755.

    Google Scholar 

  • Koenings, J. P., R. D. Burkett & J. M. Edmundson, 1990. The exclusion of limnetic Cladocera from turbid glacier-meltwater lakes. Ecology 71: 57–67.

    Google Scholar 

  • Hanson, J. M., 1990. Macroinvertebrate size-distributions of two contrasting freshwater macrophyte communities. Freshwat. Biol. 24: 481–491.

    Google Scholar 

  • Hanson, J. M., E. E. Prepas & W. C. Mackay, 1989. Size distribution of the macroinvertebrate community in a freshwater lake. Can. J. Fish. aquat. Sci. 46: 1510–1519.

    Google Scholar 

  • Jónasson, P. M., 1978. Zoobenthos of lakes. Verh. int. Ver. Limnol. 20: 13–37.

    Google Scholar 

  • Jonasz, M. & G. Fournier, 1996. Approximation of the size distribution of marine particles by a sum of log-normal functions. Limnol. Oceanogr. 41: 744–754.

    Google Scholar 

  • Lazzaro, X., R. W. Drenner, R. A. Stein & J. D. Smith, 1992. Planktivores and plankton dynamics: effects of fish biomass and planktivore type. Can. J. Fish. aquat. Sci. 49: 1466–1473.

    Google Scholar 

  • Lean, D. R. S., 1973. Phosphorus dynamics in lake water. Science 179: 678–680.

    Google Scholar 

  • Mazumder, A., D. J. McQueen, W. D. Taylor & D. R. S. Lean, 1988. Effects of fertilization and planktivorous fish (yellow perch) predation on size distribution of particulate phosphorus and assimilated phosphate: large enclosure experiments. Limnol. Oceanogr. 33: 421–430.

    Google Scholar 

  • McCauley, E. & F. Briand, 1979. Zooplankton grazing and phytoplankton species richness: field tests of the predation hypothesis. Limnol. Oceanogr. 24: 243–252.

    Google Scholar 

  • Menzel, D. W. & N. Corwin, 1965. The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnol. Oceanogr. 10: 280–282.

    Google Scholar 

  • Morin, A. & D. Nadon, 1991. Size distribution of epilithic lotic invertebrates and implications for community metabolism. J. n. am. Benthol. Soc. 10: 300–308.

    Google Scholar 

  • Peters, R. H., 1983. Size structure of the plankton community along the trophic gradient of Lake Memphremagog. Can. J. Fish. aquat. Sci. 40: 1770–1778.

    Google Scholar 

  • Platt, T. & K. Denman, 1977. Organisation in the pelagic ecosystem. Helgol. Wiss. Meeresunt. 30: 575–581.

    Google Scholar 

  • Plumb, R. H., Jr, 1981. Procedure for handling and chemical analysis of sediment and water samples. USEPA/COE, Technical Report EPA/CE-81-1.

  • Prairie, Y. T, 1996. Evaluating the predictive power of regression models. Can. J. Fish. aquat. Sci. 53: 490–492.

    Google Scholar 

  • Ramsay, P. M., S. D. Rundle, M. J. Attrill, M. G. Uttley, P.R. Williams, P.S. Elsmere & A. Abada, 1997. A rapid method for estimating biomass size spectra of benthic metazoan communities. Can. J. Fish. aquat. Sci. 54: 1716–1724.

    Google Scholar 

  • Rasmussen, J. B., 1993. Patterns in the size structure of littoral zone macroinvertebrate communities. Can. J. Fish. aquat. Sci. 50: 2192–2207.

    Google Scholar 

  • Real, M., F. Sabater & J. A. Morguí, 1992. Significant physiographic disturbances in the Ebro basin reservoirs (N.E. Spain) reflected by Oligochaeta size spectra. Hydrobiologia 235/236 (Dev. Hydrobiol. 75): 363–374.

    Google Scholar 

  • Rhew, K., R. M. Baca, C. A. Ochs & S. T. Threlkeld, 1999. Interaction effects of fish, nutrients, mixing and sediments on autotrophic picoplankton and algal composition. Freshwat. Biol. 42: 99–109.

    Google Scholar 

  • Rodríguez, J., F. Echevarría & F. Jiménez-Gómez, 1990. Physiological and ecological scalings of body size in an oligotrophic, high mountain lake (La Caldera, Sierra Nevada, Spain). J. Plankton Res. 12: 593–599.

    Google Scholar 

  • Rodríguez, J. & M. M. Mullin, 1986. Relation between biomass and body weight of plankton in a steady state oceanic system. Limnol. Oceanogr. 31: 361–370.

    Google Scholar 

  • Rojo, C. & J. Rodríguez, 1994. Seasonal variability of phytoplankton size structure in a hypertrophic lake. J. Plankton Res. 16: 317–335.

    Google Scholar 

  • Ruiz, J., 1994. The measurement of size diversity in the pelagic ecosystem. Sci. Mar. 58: 103–107.

    Google Scholar 

  • SAS Institute, 1988. SAS/STAT User's Guide 6.03, SAS Institute, Inc., Cary, 1028 pp.

    Google Scholar 

  • Schwinghamer, P., 1981. Characteristic size distributions of integral benthic communities. Can. J. Fish. aquat. Sci. 38: 1255–1263.

    Google Scholar 

  • Schwinghamer, P., 1984. Observations on size-structure and pelagic coupling of some shelf and abyssal benthic communities. In Gibbs. P. E. (ed.), Proceedings of the Nineteenth European Marine Biology Symposium in Plymouth, Devon, U.K., Cambridge University Press: 347–359.

    Google Scholar 

  • Sheldon, R. W. & T. R. Parsons, 1967. A continuous size spectrum for particulate matter in the sea. J. Fish. Res. Bd Can. 24: 909–915.

    Google Scholar 

  • Sheldon, R. W., A. Prakash & W. H. Sutcliffe, Jr, 1972. The size distribution of particles in the ocean. Limnol. Oceanogr. 17: 327–340.

    Google Scholar 

  • Sprules, W. G., J. M. Casselman & B. J. Shuter, 1983. Size distribution of pelagic particles in lakes. Can. J. Fish. aquat. Sci. 40: 1761–1769.

    Google Scholar 

  • Sprules, W. G. & A. P. Goyke, 1994. Size-based structure and production in the pelagia of Lakes Ontario and Michigan. Can. J. Fish. aquat. Sci. 51: 2603–2611.

    Google Scholar 

  • Sprules, W. G. & M. Munawar, 1986. Plankton size spectra in relation to ecosystem productivity, size and perturbation. Can. J. Fish. aquat. Sci. 43: 1789–1794.

    Google Scholar 

  • Stevens, J., 1992. Applied Multivariate Statistics for the Social Sciences, 2nd edn. Lawrence Erlbaum Associates, Hillsdale, 629 pp.

    Google Scholar 

  • Strayer, D., 1986. The size structure of a lacustrine zoobenthic community. Oecologia 69: 513–516.

    Google Scholar 

  • Tabachnick, B. G. & L. S. Fidell, 1996. Using Multivariate Statistics, Harper Collins Publishers Inc., New York, 880 pp.

    Google Scholar 

  • Threlkeld, S. T., 1994. Benthic-pelagic interactions in shallow water columns: an experimentalist's perspective. Hydrobiologia 275/276: 293–300.

    Google Scholar 

  • Tittel, J., B. Zippel, W. Geller & J. Seeger, 1998. Relationships between plankton community structure and plankton size distribution in lakes of northern Germany. Limnol. Oceanogr. 43: 1119–1132.

    Google Scholar 

  • Van Veldhoven, P. P. & G. P. Mannaerts, 1987. Inorganic and organic phosphate measurements in the nanomolar range. Anal. Biochem. 161: 45–48.

    Google Scholar 

  • Vidondo, B., Y. T. Prairie, J. M. Blanco & C. M. Duarte, 1997. Some aspects of the analysis of size spectra in aquatic ecology. Limnol. Oceanogr. 42: 184–192.

    Google Scholar 

  • Warwick, R. M., N. R. Collins, J. M. Gee & C. L. George, 1986. Species size distributions of benthic and pelagic Metazoa: evidence for interaction? Mar. Ecol. Prog. Ser. 34: 63–68.

    Google Scholar 

  • Warwick, R. M. & I. R. Joint, 1987. The size distribution of organisms in the Celtic Sea: from bacteria to Metazoa. Oecologia 73: 185–191.

    Google Scholar 

  • Zar, J. H., 1984. Biostatistical Analysis. Second edn. Prentice-Hall Inc., Englewood Cliffs, 718 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baca, R.M., Threlkeld, S.T. Using size distributions to detect nutrient and sediment effects within and between habitats. Hydrobiologia 435, 197–211 (2000). https://doi.org/10.1023/A:1004118000669

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004118000669

Navigation