Advertisement

Journal of Applied Electrochemistry

, Volume 30, Issue 7, pp 777–786 | Cite as

Design equations for optimized PEM fuel cell electrodes

  • C.C. Boyer
  • R.G. Anthony
  • A.J. Appleby
Article

Abstract

This paper presents simple mathematical expressions that can be used for optimizing fuel cell electrode structures, specifically polymer electrolyte membrane fuel cells (PEMFCs). Based on the effectiveness factor, equations relate current density to catalyst utilization and a mass transfer coefficient. These can be used to screen new materials or identify which specific processes need to be improved in an existing electrode design. The optimum thickness, or catalyst loading, and maximum current that can be achieved with a given set of materials can be calculated from a simple set of equations based on the mass transfer characteristics of the electrode materials. These methods can save considerable experimental time and cost during electrode development.

effectiveness electrode fuel cell optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Srinivasan and R. Mosdale, Bull. Electrochem. 12 (1996) 170.Google Scholar
  2. 2.
    T. Ralph, G. Hards, J. Keating, S. Campbell, D. Wilkinson, M. Davis, J. St-Pierre and M. Johnson, J. Electrochem. Soc. 144 (1997) 3845.Google Scholar
  3. 3.
    M. Uchida, Y. Fukuoka, Y. Sugawara, N. Eda and A. Ohta, J. Electrochem. Soc. 143 (1996) 2245.Google Scholar
  4. 4.
    D.M. Bernardi and M.W. Verbrugge, AIChEJ. 37 (1991) 1151.Google Scholar
  5. 5.
    T.E. Springer, T.A. Zawodzinski and S. Gottesfeld, J. Electrochem. Soc. 138 (1991) 2334.Google Scholar
  6. 6.
    T.F. Fuller and J. Newman, J. Electrochem. Soc. 140 (1993) 1218.Google Scholar
  7. 7.
    T.V. Ngugen and R. White, J. Electrochem. Soc. 140 (1993) 2178.Google Scholar
  8. 8.
    J.C. Amphlett, R.M. Baumert, R.F. Mann, B.A. Peppley and P.R. Roberge, J. Electrochem. Soc. 142 (1995) 1.Google Scholar
  9. 9.
    D. Bevers, M. Wohr, K. Yasuda and K. Oguro, J. Appl. Electrochem. 27 (1997) 1254.Google Scholar
  10. 10.
    M.L. Perry, J. Newman and E.J. Cairns, J. Electrochem. Soc. 145 (1998) 5.Google Scholar
  11. 11.
    S. Srinivasan, H.D. Hurwitz and J.O'M. Bockris, J. Chem. Phys. 46 (1967) 3108.Google Scholar
  12. 12.
    J. Giner and C. Hunter, J. Electrochem. Soc. 116 (1969) 1124.Google Scholar
  13. 13.
    M. Viitanen and M.J. Lampinen, J. Power Sources 32 (1990) 207.Google Scholar
  14. 14.
    K.A. Striebel, F.R. McLarnon and E.J. Cairns, Ind. Engr. Chem. Res. 34 (1995) 3632.Google Scholar
  15. 15.
    S.C. Yang, M.B. Cutlip and P. Stonehart, Electrochim. Acta 35 (1990) 869Google Scholar
  16. 16.
    P. DeVidts and R.E. White, J. Electrochem. Soc. 144 (1997) 1343.Google Scholar
  17. 17.
    T.E. Springer, M.S. Wilson and S. Gottesfeld, J. Electrochem. Soc. 140 (1993) 3513.Google Scholar
  18. 18.
    Y.W. Rho and S. Srinivasan, J. Electrochem. Soc. 141 (1994) 2089.Google Scholar
  19. 19.
    T.E. Springer, T.A. Zawodzinski, M.S. Wilson and S. Gottesfeld, J. Electrochem. Soc. 143 (1996) 587.Google Scholar
  20. 20.
    N. Sugumaran and A.K. Shukla, J. Power Sources 39 (1992) 249.Google Scholar
  21. 21.
    C. Olaman, M. Matte and C. Lum, J. Electrochem. Soc. 138 (1991) 2330.Google Scholar
  22. 22.
    A. Parthasarathy, B. Dave, S. Srinivasan, A.J. Appleby and C.R. Martin, J. Electrochem. Soc. 139 (1992) 1635.Google Scholar
  23. 23.
    C.Y. Yuh and J.R. Selman, AIChE J. 34 (1988) 1949.Google Scholar
  24. 24.
    T.E. Springer and I.D. Raistrick, J. Electrochem. Soc. 136 (1989) 1594.Google Scholar
  25. 25.
    C.C. Boyer, S. Gamburzev, O. Velev, S. Srinivasan and A.J. Appleby, Electrochim. Acta 43 (1998) 3703.Google Scholar
  26. 26.
    J. Muhovski, Il. Ileiv and E. Budevski, Com. Chem.: Bulgarian Academy of Sciences 14 (1981) 370.Google Scholar
  27. 27.
    S.K. Zecevic, J.S. Wainright, M.H. Litt, S.Lj. Gojkovic and R.F. Savinell, J. Electrochem. Soc. 144 (1997) 2973.Google Scholar
  28. 28.
    A. Parthasarathy, S. Srinivasan, A.J. Appleby and C.R. Martin, J. Electrochem. Soc. 139 (1992) 2856.Google Scholar
  29. 29.
    F.N. Buchi, A. Marek and G.G. Scherer, J. Electrochem. Soc. 142 (1995) 1895.Google Scholar
  30. 30.
    L. Qingfeng, X. Gang, H.A. Hjuler, R.W. Berg and N.J. Bjerrum, J. Electrochem. Soc. 142 (1995) 3250.Google Scholar
  31. 31.
    S.E. Lyke and S.H. Langer, J. Electrochem. Soc. 138 (1991) 2327.Google Scholar
  32. 32.
    F. Gloaguen and R. Durand, J. App. Electrochem. 27 (1997) 1029.Google Scholar
  33. 33.
    D.B. Sepa, M.V. Vojnovic and A. Damjanovic, Electrochim. Acta 32 (1987) 129.Google Scholar
  34. 34.
    C. Boyer, Doctoral Dissertation, Texas A&M University, College Station (1999).Google Scholar
  35. 35.
    E. Antolini, L. Giorgi, A. Pozio and E. Passalacqua, J. Power Sources 77 (1999) 136.Google Scholar
  36. 36.
    C. Marr and X. Li, J. Power Sources 77 (1999) 17.Google Scholar
  37. 37.
    O. Savadogo, J. New Mat. Electrochem. Sys. 1 (1998) 47.Google Scholar
  38. 38.
    S. Gamburzev, C. Boyer and A. J. Appleby, Fuel Cells Bulletin No. 9 (1999) 6.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • C.C. Boyer
    • 1
  • R.G. Anthony
    • 1
  • A.J. Appleby
    • 2
  1. 1.Department of Chemical EngineeringTexas A&M University, College StationUSA
  2. 2.Center for Electrochemical Systems and Hydrogen ResearchTexas A&M University, College StationUSA

Personalised recommendations