Skip to main content
Log in

Electrochemical synthesis of Cr(II) at carbon electrodes in acidic aqueous solutions

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical synthesis of Cr(II) has been investigated on a vitreous carbon rotating disc electrode and a graphite felt electrode using cyclic voltammetry, impedance spectroscopy and chronoamperometry. The results show that in 0.1 M Cr(III) + 0.5 M sulphuric acid and in 0.1 M Cr(III) + 1 M hydrochloric acid over an electrode potential range of −0.8 to 0.8 V vs SCE, the electrochemical reaction at carbon electrodes is essentially a surface process of proton adsorption and desorption, without significant hydrogen evolution and chromium(II) formation. At electrode potentials more negative than −0.8 V vs SCE, both hydrogen evolution and chromium(II) formation occurred simultaneously. At electrode potentials −0.8 to −1.2 V vs SCE, the electrochemical reduction of Cr(III) on carbon electrodes is controlled mainly by charge transfer rather than mass transport. Measurements on vitreous carbon and graphite felt electrodes in 1 M HCl, with and without 0.1 M CrCl3, allowed the exchange current density and Tafel slope for hydrogen evolution, and for the reduction of Cr(III) to Cr(II), to be determined. The chromium(III) reduction on vitreous carbon and graphite electrodes can be predicted by the extended high field approximation of the Butler–Volmer equation, with a term reflecting the conversion rate of Cr(III) to Cr(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Traube and W. Lange, Ber. Deutsch. Chem. Ges. 58 (1925) 2773.

    Google Scholar 

  2. F.A. Anet and E. Isabelle, Can. J. Chem. 36 (1958) 589.

    Google Scholar 

  3. C.E. Castro, J. Am. Chem. Soc. 83 (1961) 1601.

    Google Scholar 

  4. L.H. Thaller, Dept. of Energy, DC, DOE/NaSa1002-79/3, Washington, DC, NASA TM-79143 (1979).

  5. Moonlight Project: ‘Advanced Battery Electric Energy Storage System’, NEDO, 10, Japan (1988).

  6. M.A. Climent, P. Garces, M. Lopez-Segura and A. Aldaz, An. Quim. 83 (1987) 12.

    Google Scholar 

  7. M. Lopez-Atalaya, G. Codina, J.R. Perez, J.L. Vazquez, A. Aldaz and M.A. Climent, J. Power Sources 35 (1991) 225.

    Google Scholar 

  8. C.I. House and G.H. Kelsall, in ‘Extractive Metallurgy 85’, IMM, London (1985), p. 659.

    Google Scholar 

  9. W.L. Staker, US Patent 543 208 (1975).

  10. G.H. Kelsall, C.I. House and F.P. Gudyanga, J. Electroanal. Chem. 244 (1988) 179.

    Google Scholar 

  11. T. Hirato and Y. Awakura, in 4th International Symposium on Electrochemistry in Mineral and Metal Processing, Los Angeles, CA (May 1996), Electrochemical Society, NJ, p. 368.

    Google Scholar 

  12. R. Andreu and F. Sanchez, J. Electroanal. Chem. 210 (1986) 111.

    Google Scholar 

  13. M.J. Weaver and F.C. Anson, Inorg. Chem. 15 (1976) 1871.

    Google Scholar 

  14. M. Zielinska-Ignaciuk and Z. Galus, J. Electroanal. Chem. 50 (1974) 41.

    Google Scholar 

  15. R. Andreu, M. Rueda, D. Gonzalez-Arjona and F. Sanchez, J. Electroanal. Chem. 175 (1984) 251.

    Google Scholar 

  16. S.W. Barr, K.L. Guyer and M.J. Weaver, J. Electroanal. Chem. 111 (1980) 41.

    Google Scholar 

  17. J.S.Y. Liu, P.Y. Chen, I.W. Sun and C.L. Hussey, J. Electrochem. Soc. 144 (1997) 2388.

    Google Scholar 

  18. L.M. Yudi, A.M.B. Aruzzi and V.M. Solis, J. Appl. Electrochem. 18 (1988) 417.

    Google Scholar 

  19. H.Y. Liu, J.T. Hupp and M.J. Weaver, J. Electroanal. Chem. 179 (1984) 219.

    Google Scholar 

  20. C.D. Wu, D.A. Scherson, E.J. Calvo, E.B. Yeager and M.A. Reid, J. Electrochem. Soc. 133 (1986) 2109.

    Google Scholar 

  21. D. Pletcher and J.C.P. White, Electrochim. Acta 37 (1992) 575.

    Google Scholar 

  22. R. Meier, J. Electroanal. Chem. 263 (1989) 175.

    Google Scholar 

  23. M.J. Weaver and T.L. Satterberg, J. Phys. Chem. 81 (1977) 1772.

    Google Scholar 

  24. M.B. Redmount and E.A. Heintz, The manufacture of graphite electrodes, in H. Marsh, E.A. Heintz and F.R. Reinoso (eds), ‘Introduction to Carbon Technologies’ (Universidad de Alicante, Secretariado de Publicaciones, 1997).

  25. M.R. Tarasevicch and E.I. Khrushcheva, Electrocatalytic properties of carbon materials, in B.E. Conway, J.O.M. Bockris and R.E. White (eds), ‘Modern Aspects of Electrochemistry’, Vol. 19 (1989).

  26. I.C. Agarwal, A.M. Rochon, H.D. Gesser and A.B. Sparling, Water Res. 18 (1984) 232.

    Google Scholar 

  27. D. Golub and Y. Oren, J. Appl. Electrochem. 19 (1989) 311.

    Google Scholar 

  28. B. Delanghe, S. Tellier and M. Astruc, Environ. Technol. 11 (1990) 999.

    Google Scholar 

  29. F.C. Walsh, D. Pletcher, I. Whyte and J.P. Millington, J. Chem. Tech. Biotechnol. 55 (1992) 147.

    Google Scholar 

  30. N. Vatistas, P.F. Marconi and M. Bartolozzi, Electrochim. Acta 36 (1991) 339.

    Google Scholar 

  31. D. Pletcher, I. Whyte, F.C. Walsh and J.P. Millington, J. Appl. Electrochem. 21 (1991) 659.

    Google Scholar 

  32. R. Carta, S. Palmas, A.M. Polcaro and G. Tola, J. Appl. Electrochem. 21 (1991) 793.

    Google Scholar 

  33. K. Kinoshita and S.C. Leach, J. Electrochem. Soc. 129 (1982) 1993.

    Google Scholar 

  34. H.P. Boehm, Adv. Catal. 16 (1966) 179.

    Google Scholar 

  35. V.A. Garten, D.E. Weiss and J.B. Willis, Aust. J. Chem. 10 (1957) 295.

    Google Scholar 

  36. J.B. Donnet, Carbon 20 (1982) 267.

    Google Scholar 

  37. D.R. Lide (Ed.), ‘CRC Handbook of Chemistry and Physics’, 80th edn, (London/New York, 1999-2000).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, Q., Brandon, N. & Kelsall, G. Electrochemical synthesis of Cr(II) at carbon electrodes in acidic aqueous solutions. Journal of Applied Electrochemistry 30, 1109–1117 (2000). https://doi.org/10.1023/A:1004052419708

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004052419708

Navigation